## Algebraic Models for Homotopy Types III Algebraic Models in *p*-Adic Homotopy Theory

Michael A. Mandell

Indiana University

Young Topologists Meeting 2013

July 11, 2013

M.A.Mandell (IU)

Models in p-Adic Homotopy Theory

#### Review

Polynomial De Rham functor  $\Omega_{\rm pl}^*$  from simplicial sets to commutative differential graded algebras

- Defined by  $\Omega_{pl}^* X_{\bullet} = \operatorname{Hom}_{\Delta^{op}}(X_{\bullet}, \nabla_{\bullet}^*)$
- Has an adjoint  $U_{\bullet}A = C\mathcal{A}(A, \nabla^*_{\bullet})$
- Quillen adjunction

 $\mathbb{P}\langle x \rangle \to \Omega^*_{\mathsf{pl}}(K(\mathbb{Q}, n))$  is a weak equivalence.

 $\mathcal{K}(\mathbb{Q}, n) 
ightarrow \mathcal{U}_{ullet}(\mathbb{P}\langle x 
angle) = n$ -cycles in $abla^*_{ullet}$ 

is a weak equivalence.

 $\Omega_{pl}^*$  and  $U_{\bullet}$  are inverse equivalences on the homotopy categories of finite type simply connected spaces and finite type cohomologically simply connected CDGAs.



Ш

1/16

July 2013

## Outline

Theorem

The p-adic homotopy theory of finite type simply connected spaces is equivalent to the homotopy theory of finite type cohomologically simply connected spacelike  $E_{\infty} \bar{\mathbb{F}}_{p}$ -algebras.

Mandell, Michael A.  $E_{\infty}$  algebras and *p*-adic homotopy theory, 2001.



## *p*-Adic Homotopy Theory

#### Definition

A *p*-adic equivalence is a map  $X \to Y$  that induces an isomorphism on  $\mathbb{F}_p$  homology  $H_*(-; \mathbb{F}_p)$ , or equivalently,  $\mathbb{F}_p$  cohomology  $H^*(-; \mathbb{F}_p)$ .

#### Theorem (mod *p* Whitehead Theorem)

If X and Y are finite type simply connected spaces, then a map  $X \to Y$ induces an isomorphism on  $H_*(-; \mathbb{F}_p)$  if and only if it induces an isomorphism on  $H_*(-; \mathbb{Z}_p^{\wedge})$  if and only if it induces an isomorphism on  $\pi_* \otimes \mathbb{Z}_p^{\wedge}$ .

Theorem (Bousfield  $H_*(-; \mathbb{F}_p)$ -Local Model Structure)

The category of simplicial sets admits a model structure where

- The weak equivalences are the p-adic equivalences
- The cofibrations are the injections
- The fibrations are the maps with the RLP with respect to the acyclic cofibrations.

## *p*-Complete Spaces and *p*-Completion

A finite type simply connected space is *p*-complete if and only if it is weakly equivalent to a fibrant object in the Bousfield  $H_*(-; \mathbb{F}_p)$ -local model structure. (This is actually a theorem rather than a definition)

The *p*-completion map  $X \to X_p^{\wedge}$  is the initial map in the homotopy category from *X* to a *p*-complete space.

It is also the unique (up to unique isomorphism) map in the homotopy category that is a p-adic equivalence from X to a p-complete space.



## **Polynomial Differential Forms**

Try to construct *p*-adic differential forms

Free commutative differential graded  $\mathbb{Z}_p^{\wedge}$ -algebra

$$\mathbb{P} X = \mathbb{Z}_{p}^{\wedge} \oplus X \oplus (X \otimes_{\mathbb{Z}_{p}^{\wedge}} X) / \Sigma_{2} \oplus \cdots$$

Polynomial forms on an *n*-simplex

$$abla_n^* = \mathbb{P}\langle t_0, \ldots, t_n, dt_0, \ldots, dt_n \mid \sum t_i = 1, \sum dt_i = 0 \rangle$$

#### Problem

 $\nabla_1^*$  is not acyclic.  $t^{p-1}dt$  is a cycle but not a boundary:  $d(t^p) = pt^{p-1}dt$ .

You can try to fix this using "divided powers" (include  $\frac{1}{p}t^{p}$ ) [Grothendieck, "Pursuing Stacks", §94]

#### But nothing like this will work



## Contradiction

Suppose we could form some version  $\Omega_{pl}^*$  of the polynomial DeRham complex over  $\mathbb{Z}$  or  $\mathbb{Z}_p^{\wedge}$ .



# Steenrod Operations (p = 2)

Steenrod squares  $Sq^i \colon H^n(X; \mathbb{F}_2) \to H^{n+i}(X; \mathbb{F}_2)$ 

Characterized by following properties:

- Natural homomorphisms
- Commute with suspension isomorphism / boundary map
- If |x| = i then Sq<sup>i</sup>x = x<sup>2</sup> and Sq<sup>j</sup>x = 0 for j > i (unstable condition)

Calculation of  $H^*(K(\mathbb{F}_2, n); \mathbb{F}_2)$ . Further properties:

- $Sq^0 = id$  and  $Sq^i = 0$  for i < 0
- Cartan formula:  $Sq^{n}(xy) = \sum (Sq^{i}x)(Sq^{n-i}y)$
- Adem relations: if s < 2t,  $Sq^{s}Sq^{t} = \sum_{i} (s - 2i, t - a + i - 1)Sq^{s+t-i}Sq^{i}$

#### **Construction of the Steenrod Operations**

Multiplication on  $C^*X$  is not commutative but it is homotopy commutative and commutative up to "all higher homotopies"

Working over  $\mathbb{F}_2$ ,

$$dh^{n}(x,y) \equiv h^{n-1}(x,y) + h^{n-1}(y,x) + h^{n}(dx,y) + h^{n}(x,dy)$$

 $E\Sigma_2 \otimes_{\Sigma_2} (C^*X)^{\otimes 2} \to C^*X$ 

So for  $dx \equiv 0 \mod 2$ ,

$$dh^{n}(x,x) \equiv h^{n-1}(x,x) + h^{n-1}(x,x) + 0 + 0 \equiv 0 \mod 2$$

 $h^n(x, x)$  is a mod 2 cycle, represents  $Sq^{|x|-n}x$ .





```
M.A.Mandell (IU)
```

# $E_{\infty}$ Algebras

$$E\Sigma_n \otimes_{\Sigma_n} A^{\otimes n} \to A$$

Like a commutative differential graded algebra but instead of having just one possible way of multiplying *n* elements, it has a contractible complex  $E\Sigma_n$  of *n*-ary products.

 $E_{\infty}$  algebras have Steenrod operations that satisfy

Unstable condition

$$Sq^n x = x^2$$
 for  $n = |x|$  and  $Sq^n x = 0$  for  $n > |x|$ 

• Cartan and Adem relations

But:

- No reason for  $Sq^0$  to be the identity  $(Sq^0x = h^n(x, x))$
- No reason for  $Sq^i$  to be 0 for i < 0  $(Sq^ix = h^{n-i}(x, x))$

Steenrod algebra  $\mathfrak{A}$  is a quotient of the algebra of all operations  $\mathfrak{B}$   $\mathfrak{B}$  is the cohomologically graded full Araki-Kudo Dyer-Lashof algebra

## Free $E_{\infty}$ Algebras and Eilenberg–Mac Lane Spaces

In rational homotopy theory, we had  $\Omega^*_{pl}(\mathcal{K}(\mathbb{Q}, n)) \simeq \mathbb{P}(\mathbb{Q}[n])$ .

Free  $E_{\infty} \mathbb{F}_{p}$ -algebra

 $\mathbb{E} X = \mathbb{F}_{\rho} \oplus X \oplus E \Sigma_2 \otimes_{\Sigma_2} (X \otimes X) \oplus \cdots$ 

 $H^*(\mathbb{E}(\mathbb{F}_p[n]))$  is the free graded commutative  $\mathfrak{B}$ -algebra on a generator in degree *n* satisfying the unstable condition

 $H^*(K(\mathbb{F}_p, n); \mathbb{F}_p)$  is the free graded commutative  $\mathfrak{A}$ -algebra on a generator in degree *n* satisfying the unstable condition



## Free $E_{\infty}$ Algebras and Eilenberg–Mac Lane Spaces II

The pushout  $B_n = \mathbb{E}\langle x, y \mid dy = (1 - Sq^0)x \rangle$  where |x| = n.

Theorem

 $\mathfrak{A} = \mathfrak{B}/(1 - P^0)$ . The pushout

is quasi-isomorphic to  $C^*(K(\mathbb{F}_p, n); \mathbb{F}_p)$ 

The pushout  $B_n = \mathbb{E}\langle x, y \mid dy = (1 - P^0)x \rangle$  where |x| = n.

For p > 2,  $Sq^0$  is usually denoted  $P^0$ 

## The Homotopy Theory of $E_{\infty}$ Algebras

#### The Model Structure on $E_{\infty}$ Algebras

- Weak equivalences = quasi-isomorphisms
- Fibrations = surjections
- Cofibrations = formed by attaching cells of the form  $\mathbb{E}\langle x \rangle \to \mathbb{E}\langle x, y \mid dy = x \rangle$

#### **Spacial Realization**

 $C^*X_{ullet} = \operatorname{Hom}_{\Delta^{\operatorname{op}}}(X_{ullet}, C^*(\Delta^{ullet}))$ Let  $U_{ullet}A = \mathcal{E}(A, C^*(\Delta^{ullet}))$ 

$$\mathcal{S}(X_{\bullet}, U_{\bullet}A) \cong \mathcal{E}(A, C^*X_{\bullet}) = \mathcal{E}^{\mathsf{op}}(C^*X_{\bullet}, A)$$

 $C^*$  sends injections to surjections and preserves weak equivalences, so  $C^*$ ,  $U_{\bullet}$  is a Quillen adjunction.

```
M.A.Mandell (IU)
```

Models in *p*-Adic Homotopy Theory

## The Unit Map for $K(\mathbb{F}_p, n)$

$$\operatorname{Ho}_{\rho} \mathcal{S}(X, Y) \xrightarrow{C_*} \operatorname{Ho} \mathcal{E}(C^*Y, C^*X) \cong \operatorname{Ho}_{\rho} \mathcal{S}(X, RU_{\bullet}C^*Y)$$

induced by unit map  $Y \rightarrow RU_{\bullet}C^*Y = U_{\bullet}A$  for any cofibrant approximation  $A \rightarrow C^*Y$ .

$$\begin{array}{cccc} \mathbb{E}\bar{\mathbb{F}}_{\rho}[n] \xrightarrow{1-P^{0}} \mathbb{E}\bar{\mathbb{F}}_{\rho}[n] & & \bar{U}_{\bullet}\bar{B}_{n} \longrightarrow C^{n}(\Delta^{\bullet};\bar{\mathbb{F}}_{\rho}) \simeq & * \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \mathbb{E}(C\bar{\mathbb{F}}_{\rho}[n]) \longrightarrow \bar{B}_{n} & & K(\bar{\mathbb{F}}_{\rho},n) \xrightarrow{1??\phi} K(\bar{\mathbb{F}}_{\rho},n) \end{array}$$

So  $U_{ullet}B_n\simeq K(\mathbb{F}_p,n) imes K(\mathbb{F}_p,n-1).$ 

To fix this, use  $E_{\infty} \overline{\mathbb{F}}_p$ -algebras:  $\overline{U}_{\bullet}(\overline{B}_n) \simeq \mathcal{K}(\mathbb{F}_p, n)$ .

For  $B_n \xrightarrow{\simeq} C^* K(\mathbb{F}_p, n)$ 

July 2013

13/16

## Algebraic Models for *p*-Adic Homotopy Theory

Theorem

If X and Y are finite type and simply connected then

$$\mathcal{H}^*(-; \overline{\mathbb{F}}_{\mathcal{P}}) \colon \operatorname{Ho}_{\mathcal{P}} \mathcal{S}(X, Y) o \operatorname{Ho} \mathcal{E}_{\overline{\mathbb{F}}_{\mathcal{P}}}(\mathcal{C}^*(Y; \overline{\mathbb{F}}_{\mathcal{P}}), \mathcal{C}^*(X; \overline{\mathbb{F}}_{\mathcal{P}}))$$

is a bijection.

С

(This is slightly weaker than the theorem stated at the start of the lecture.)

Suffices to show that  $Y \to \overline{U}_{\bullet}A$  is a *p*-adic equivalence for a cofibrant approximation  $A \to C^*(Y; \overline{\mathbb{F}}_p)$ .

True for  $K(\mathbb{F}_p, n)$ 

Eilenberg–Moore: Homotopy pullbacks of finite type simply connected spaces go to homotopy pullback of  $E_{\infty}$  algebras.

For  $K(\mathbb{Z}/p^k, n)$  use fibration seq.  $K(\mathbb{Z}/p^k) \to K(\mathbb{Z}/p^{k-1}) \to K(\mathbb{Z}/p, n+1)$ .  $K(\mathbb{Z}, n)_p^{\wedge} \simeq K(\mathbb{Z}_p^{\wedge}, n) \simeq \text{holim } K(\mathbb{Z}/p^k, n)$ . Follows for all finite type  $K(\pi, n)$ .

Induction up principal Postnikov tower.

```
M.A.Mandell (IU)
```

Models in *p*-Adic Homotopy Theory

## The Unit for $E_{\infty} \mathbb{F}_{p}$ -algebras

#### So what does

 $\mathsf{Ho}_{\rho}\,\mathcal{S}(X,\,Y) \to \mathit{Ho}\mathcal{E}_{\mathbb{F}_{\rho}}(\mathit{C}^{*}(Y;\mathbb{F}_{\rho}),\mathit{C}^{*}(X;\mathbb{F}_{\rho})) \simeq \mathsf{Ho}_{\rho}\,\mathcal{S}(X,\mathit{RU}_{\bullet}\,\mathit{C}^{*}(Y;\mathbb{F}_{\rho}))$ look like?

Answer:  $Y \rightarrow \Lambda Y_{p}^{\wedge}$ 

 $\mathcal{C}^*(\mathit{Y}; ar{\mathbb{F}}_{\!\!\mathcal{P}}) \simeq \mathcal{C}^*(\mathit{Y}; ar{\mathbb{F}}_{\!\!\mathcal{P}}) \otimes ar{\mathbb{F}}_{\!\!\mathcal{P}}$ 

So if  $A \to C^*(Y; \mathbb{F}_p)$  is a cofibrant  $E_{\infty} \mathbb{F}_p$ -algebra approximation, then  $A \otimes \overline{\mathbb{F}}_p \to C^*(Y; \overline{\mathbb{F}}_p)$  is a cofibrant  $E_{\infty} \mathbb{F}_p$ -algebra approximation.

Then  $Y \simeq \overline{U}_{ullet}(A \otimes \overline{\mathbb{F}}_{\rho}) = \mathcal{E}_{\overline{\mathbb{F}}_{\rho}}(A \otimes \overline{\mathbb{F}}_{\rho}, C^*(\Delta^{ullet}; \overline{\mathbb{F}}_{\rho})) \cong \mathcal{E}_{\mathbb{F}_{\rho}}(A, C^*(\Delta^{ullet}; \overline{\mathbb{F}}_{\rho}))$ 

(Assuming without loss of generality that Y is p-complete)

 $\mathbb{F}_{p}$  is (homotopy) fixed points of Frobenius,  $U_{\bullet}A$  becomes homotopy fixed points of an automorphism  $\Phi$  on  $\overline{U}_{\bullet}(A \otimes \overline{\mathbb{F}}_{p})$ . The weak equivalence  $Y \to \overline{U}_{\bullet}(A \otimes \overline{\mathbb{F}}_{p})$  factors through the fixed points of this automorphism, so we get weak equivalences

$$U_ullet A\simeq (ar U_ullet (A\otimesar {\mathbb F}_
ho))^{h\Phi}\simeq Y^{h\Phi}=\Lambda Y$$

Models in *p*-Adic Homotopy Theory



Ш

15/16

July 2013