Localization Sequences in THH

Michael A. Mandell

Indiana University

Banff Workshop on
Algebraic K-Theory and Equivariant Homotopy Theory

February 16, 2012
Overview

Localization Sequences in THH

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg
Overview

Localization Sequences in \(THH \) and \(TC \) II

- Joint work with Andrew Blumberg
Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg

Main Goal: Explain Ausoni–Rognes/Hesselholt conjecture about the localization sequences for $THH(ku)$ (and $TC(ku)$)
Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg

Main Goal: Explain Ausoni–Rognes/Hesselholt conjecture about the localization sequences for $THH(ku)$ (and $TC(ku)$)

2nd Goal: Understand the relationship to already known localization sequences in THH and TC
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg

Main Goal: Explain Ausoni–Rognes/Hesselholt conjecture about the localization sequences for $THH(ku)$ (and $TC(ku)$)

2nd Goal: Understand the relationship to already known localization sequences in THH and TC

3rd Goal: Make sense of the THH of Waldhausen categories
Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \to K(R) \to K(F) \to$$

This uses the K-theory of abelian categories. Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules. (Devissage theorem.)

R is a local ring, PID unique (non-zero) irreducible elt π

$k = R/\pi$

$F = R[\pi^{-1}]$
Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \to K(R) \to K(F) \to$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \to K(R) \to K(F) \to$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \rightarrow K(R) \rightarrow K(F) \rightarrow$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Quillen Localization Sequence

Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \rightarrow K(R) \rightarrow K(F) \rightarrow$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Let R be a complete discrete valuation ring, with residue field k perfect of characteristic $p > 2$ and field of fractions F of characteristic zero, containing the p^n-th roots of unity. Then:

- $K(F; \mathbb{Z}/p^n)$ can be computed in terms of the De Rham–Witt complex.
- F satisfies the Lichtenbaum-Quillen conjecture.

Argument

1. McCarthy Theorem: If $A \to B$ is surjective with nilpotent kernel

\[
\begin{array}{c c c}
K(A)_{\wedge}^p & \longrightarrow & K(B)_{\wedge}^p \\
\downarrow & & \downarrow \\
TC(A)_{\wedge}^p & \longrightarrow & TC(B)_{\wedge}^p
\end{array}
\]

is homotopy cartesian.

2. Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then $K(k)_{\wedge}^p \cong H\mathbb{Z}_{\wedge}^p$.

3. Suslin results imply $K(R)_{\wedge}^p \cong \operatorname{holim} K(R/\pi^n)_{\wedge}^p$.

Hesselholt–Madsen then show:

\[
K(k)_{\wedge}^p \cong TC(k)[0, \infty), \quad K(R)_{\wedge}^p \cong TC(R)[0, \infty).
\]
1 McCarthy Theorem: If $A \to B$ is surjective with nilpotent kernel

$$K(A)_p^\wedge \longrightarrow K(B)_p^\wedge$$

$$\downarrow \quad \downarrow$$

$$TC(A)_p^\wedge \longrightarrow TC(B)_p^\wedge$$

is homotopy cartesian.

2 Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then $K(k)_p^\wedge \simeq H\mathbb{Z}_p^\wedge$.

3 Suslin results imply $K(R)_p^\wedge \simeq \text{holim } K(R/\pi^n)_p^\wedge$.

Hesselholt–Madsen then show:

$$K(k)_p^\wedge \simeq TC(k)[0, \infty) \quad K(R)_p^\wedge \simeq TC(R)[0, \infty)$$
1 McCarthy Theorem: If $A \to B$ is surjective with nilpotent kernel

$$
\begin{array}{c}
K(A)^\wedge_p \longrightarrow K(B)^\wedge_p \\
\downarrow \hspace{0.5cm} \downarrow \\
TC(A)^\wedge_p \longrightarrow TC(B)^\wedge_p
\end{array}
$$

is homotopy cartesian.

2 Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then $K(k)^\wedge_p \simeq H\mathbb{Z}_p^\wedge$.

3 Suslin results imply $K(R)^\wedge_p \simeq \text{holim} K(R/\pi^n)^\wedge_p$.

Hesselholt–Madsen then show:

$$
K(k)^\wedge_p \simeq TC(k)[0, \infty) \hspace{2cm} K(R)^\wedge_p \simeq TC(R)[0, \infty)
$$
McCarthy Theorem: If \(A \to B \) is surjective with nilpotent kernel

\[
\begin{align*}
K(A)_{\mathbb{Z}_p}^\wedge & \longrightarrow K(B)_{\mathbb{Z}_p}^\wedge \\
\downarrow & \quad \downarrow \\
TC(A)_{\mathbb{Z}_p}^\wedge & \longrightarrow TC(B)_{\mathbb{Z}_p}^\wedge
\end{align*}
\]

is homotopy cartesian.

Quillen–Krasner Theorem: If \(k \) is a perfect field of characteristic \(p \), then \(K(k)_{\mathbb{Z}_p}^\wedge \simeq H\mathbb{F}_p^\wedge \).

Suslin results imply \(K(R)_{\mathbb{Z}_p}^\wedge \simeq \text{holim} K(R/\pi^n)_{\mathbb{Z}_p}^\wedge \).

Hesselholt–Madsen then show:

\[
\begin{align*}
K(k)_{\mathbb{Z}_p}^\wedge & \simeq TC(k)[0, \infty) \\
K(R)_{\mathbb{Z}_p}^\wedge & \simeq TC(R)[0, \infty)
\end{align*}
\]
1. McCarthy Theorem: If $A \to B$ is surjective with nilpotent kernel

\[
\begin{align*}
K(A)^\wedge_p & \longrightarrow K(B)^\wedge_p \\
\downarrow & \\
TC(A)^\wedge_p & \longrightarrow TC(B)^\wedge_p
\end{align*}
\]

is homotopy cartesian.

2. Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then $K(k)^\wedge_p \simeq H\mathbb{Z}_p^\wedge$.

3. Suslin results imply $K(R)^\wedge_p \simeq \text{holim } K(R/\pi^n)^\wedge_p$.

Hesselholt–Madsen then show:

\[
\begin{align*}
K(k)^\wedge_p & \simeq TC(k)[0, \infty) \\
K(R)^\wedge_p & \simeq TC(R)[0, \infty)
\end{align*}
\]
Key step to enable computation

Identify the cofiber of $\text{TC}(k) \to \text{TC}(R)$ in intrinsic terms.

Identify the cofiber of $\text{THH}(k) \to \text{THH}(R)$ in intrinsic terms.

Note: Cofiber is not $\text{THH}(F)$

Example

<table>
<thead>
<tr>
<th>$R = \mathbb{Z}^\wedge_p$,</th>
<th>$k = \mathbb{Z}/p$,</th>
<th>$F = \mathbb{Q}^\wedge_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(\mathbb{Z}/p) = \bigvee \Sigma^{2n} \mathbb{H}\mathbb{Z}/p$</td>
<td>$\text{THH}(\mathbb{Z}_p^\wedge) = \bigvee \Sigma^{2n-1} \mathbb{H}\mathbb{Z}_p^\wedge/n$</td>
<td>$\text{THH}(\mathbb{Q}_p^\wedge) = \mathbb{H}\mathbb{Q}_p^\wedge$</td>
</tr>
</tbody>
</table>

This step is not the “big idea” in the paper. Big idea is the computation itself and interpretation in terms of De Rham–Witt. This is just the piece of theory that makes it go.
Key step to enable computation

Identify the cofiber of $TC(k) \to TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \to THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

<table>
<thead>
<tr>
<th>$R = \mathbb{Z}_p^\wedge$, $k = \mathbb{Z}/p$, $F = \mathbb{Q}_p^\wedge$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$THH(\mathbb{Z}/p) = \bigvee \Sigma^{2n} H\mathbb{Z}/p$</td>
</tr>
<tr>
<td>$THH(\mathbb{Z}_p^\wedge) = \bigvee \Sigma^{2n-1} H\mathbb{Z}_p^\wedge/n$</td>
</tr>
<tr>
<td>$THH(\mathbb{Q}_p^\wedge) = H\mathbb{Q}_p^\wedge$</td>
</tr>
</tbody>
</table>

This step is not the “big idea” in the paper. Big idea is the computation itself and interpretation in terms of De Rham–Witt. This is just the piece of theory that makes it go.
Key step to enable computation

Identify the cofiber of $TC(k) \to TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \to THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

$R = \mathbb{Z}_p^\wedge$, $k = \mathbb{Z}/p$, $F = \mathbb{Q}_p^\wedge$

- $THH(\mathbb{Z}/p) = \bigvee \Sigma^{2n} \mathbb{H}\mathbb{Z}/p$
- $THH(\mathbb{Z}_p^\wedge) = \bigvee \Sigma^{2n-1} \mathbb{H}\mathbb{Z}_p^\wedge/n$
- $THH(\mathbb{Q}_p^\wedge) = \mathbb{H}\mathbb{Q}_p$

This step is not the “big idea” in the paper. Big idea is the computation itself and interpretation in terms of De Rham–Witt. This is just the piece of theory that makes it go.
Key step to enable computation

Identify the cofiber of $TC(k) \to TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \to THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

<table>
<thead>
<tr>
<th>$R = \mathbb{Z}_p$</th>
<th>$k = \mathbb{Z}/p$</th>
<th>$F = \mathbb{Q}_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$THH(\mathbb{Z}/p) = \bigvee \Sigma^{2n} H\mathbb{Z}/p$</td>
<td>$THH(\mathbb{Z}_p^\wedge) = \bigvee \Sigma^{2n-1} H\mathbb{Z}_p^\wedge/n$</td>
<td>$THH(\mathbb{Q}_p^\wedge) = H\mathbb{Q}_p$</td>
</tr>
</tbody>
</table>

This step is not the “big idea” in the paper. Big idea is the computation itself and interpretation in terms of De Rham–Witt. This is just the piece of theory that makes it go.
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

\[THH(k) \to THH(R) \to THH(R \mid F) \to \]

Recall

\[THH(k) \cong THH(T) = N_{\text{cyc}}^{\text{Bök}}(S \cdot T) \cong N_{\text{cyc}}^{\text{Bök}}(S \cdot N^i \cdot T) \]

\[THH(R) \cong THH(M) = N_{\text{cyc}}^{\text{Bök}}(S \cdot M) \cong N_{\text{cyc}}^{\text{Bök}}(S \cdot N^i \cdot M) \]

$T = \text{Torsion f.g. } R\text{-modules}$

$M = \text{All f.g. } R\text{-modules}$

$N_{\text{cyc}}^{\text{Bök}}(S \cdot -)$ is the THH of an exact category functor.
Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$\text{THH}(k) \rightarrow \text{THH}(R) \rightarrow \text{THH}(R \mid F) \rightarrow$$

Recall

$$\text{THH}(k) \cong \text{THH}(\mathcal{T}) = N_{\text{Bök}}^{\text{cyc}}(S \cdot \mathcal{T}) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^i \mathcal{T})$$

$$\text{THH}(R) \cong \text{THH}(\mathcal{M}) = N_{\text{Bök}}^{\text{cyc}}(S \cdot \mathcal{M}) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^i \mathcal{M})$$

$\mathcal{T} =$ Torsion f.g. R-modules

$\mathcal{M} =$ All f.g. R-modules

$N_{\text{Bök}}^{\text{cyc}}(S \cdot -)$ is the THH of an exact category functor.
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \rightarrow THH(R) \rightarrow THH(R | F) \rightarrow$$

Recall

$$THH(k) \cong THH(\mathcal{T}) = N^cyc_{Bök}(S\cdot \mathcal{T}) \cong N^cyc_{Bök}(S\cdot N^i\mathcal{T})$$

$$THH(R) \cong THH(\mathcal{M}) = N^cyc_{Bök}(S\cdot \mathcal{M}) \cong N^cyc_{Bök}(S\cdot N^i\mathcal{M})$$

$\mathcal{T} = $ Torsion f.g. R-modules
$\mathcal{M} = $ All f.g. R-modules

$N^cyc_{Bök}(S\cdot -)$ is the THH of an exact category functor.
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F) \rightarrow$$

Recall

$$THH(k) \cong THH(\mathcal{T}) = N^c_{\text{Bök}}(S \cdot \mathcal{T}) \cong N^c_{\text{Bök}}(S \cdot N^i \mathcal{T})$$

$$THH(R) \cong THH(\mathcal{M}) = N^c_{\text{Bök}}(S \cdot \mathcal{M}) \cong N^c_{\text{Bök}}(S \cdot N^i \mathcal{M})$$

$\mathcal{T} = \text{Torsion f.g. } R\text{-modules}$

$\mathcal{M} = \text{All f.g. } R\text{-modules}$

$\mathcal{C} = \text{Complexes of f.g. } R\text{-modules}$

$w = \text{weak equivalences } = \text{quasi-isomorphisms}$

$N^c_{\text{Bök}}(S \cdot -)$ is the THH of an exact category functor.
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \to THH(R) \to THH(R | F) \to$$

Recall

$$THH(k) \cong THH(\mathcal{T}) = \text{N}^{\text{cyc}}_{\text{Bök}}(S \cdot \mathcal{T}) \cong \text{N}^{\text{cyc}}_{\text{Bök}}(S \cdot N^i \mathcal{T}) \cong \text{N}^{\text{cyc}}_{\text{Bök}}(S \cdot N^w C q)$$

$$THH(R) \cong THH(\mathcal{M}) = \text{N}^{\text{cyc}}_{\text{Bök}}(S \cdot \mathcal{M}) \cong \text{N}^{\text{cyc}}_{\text{Bök}}(S \cdot N^i \mathcal{M})$$

$\mathcal{T} = \text{Torsion } f.g. \ R\text{-modules}$

$\mathcal{M} = \text{All } f.g. \ R\text{-modules}$

$C = \text{Complexes of } f.g. \ R\text{-modules}$

$w = \text{weak equivalences} = \text{quasi-isomorphisms}$

$\text{N}^{\text{cyc}}_{\text{Bök}}(S \cdot -)$ is the THH of an exact category functor.
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \to THH(R) \to THH(R | F) \to$$

Recall

$$THH(k) \cong THH(\mathcal{T}) = N^\text{cyc}_{\text{Bök}}(S \cdot \mathcal{T}) \cong N^\text{cyc}_{\text{Bök}}(S \cdot N^i \mathcal{T}) \cong N^\text{cyc}_{\text{Bök}}(S \cdot N^w \mathcal{C}^q)$$

$$THH(R) \cong THH(\mathcal{M}) = N^\text{cyc}_{\text{Bök}}(S \cdot \mathcal{M}) \cong N^\text{cyc}_{\text{Bök}}(S \cdot N^i \mathcal{M}) \cong N^\text{cyc}_{\text{Bök}}(S \cdot N^w \mathcal{C})$$

$\mathcal{T} = \text{Torsion f.g. } R\text{-modules}$

$\mathcal{M} = \text{All f.g. } R\text{-modules}$

$\mathcal{C} = \text{Complexes of f.g. } R\text{-modules}$, $\mathcal{C}^q = q\text{-acyclic complexes}$

$w = \text{weak equivalences = quasi-isomorphisms}$

$q = \text{mod torsion equivalences}$

$N^\text{cyc}_{\text{Bök}}(S \cdot -)$ is the THH of an exact category functor.
Construction

\[
\text{THH}(k) \quad \lll \quad \text{THH}(R) \quad \lll \quad \text{THH}(R \mid F)
\]

\[
\text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C^q) \quad \lll \quad \text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C) \quad \lll \quad \text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^q C)
\]

Definition

\[
\text{THH}(R \mid F) = \text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^q C)
\]
Construction

\[\text{THH}(k) \rightarrow \text{THH}(R) \rightarrow \text{THH}(R \mid F) \]

\[\text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot C^q) \quad \text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot C) \quad \text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^q \cdot C) \]

Definition

\[\text{THH}(R \mid F) = \text{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^q \cdot C) \]
Construction

\[\text{THH}(k) \to \text{THH}(R) \to \text{THH}(R \mid F) \]

\[\text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w C^q) \quad \text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w C) \quad \text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^q C) \]

Waldhausen Square

The square

\[(S \cdot N^w C^q) \quad (S \cdot N^q C^q) \]

\[(S \cdot N^w C) \quad (S \cdot N^q C) \]
Construction

The square

\[\begin{array}{ccc}
\text{THH}(k) & \xrightarrow{\sim} & \text{THH}(R) \\
N_{\text{Böck}}^{\text{cyc}}(S \cdot N^w C^q) & \xrightarrow{\sim} & N_{\text{Böck}}^{\text{cyc}}(S \cdot N^w C) \\
\end{array} \]

\[\begin{array}{ccc}
\text{THH}(R \mid F) & \xrightarrow{\sim} & \text{THH}(k) \\
N_{\text{Böck}}^{\text{cyc}}(S \cdot N^q C) & \xrightarrow{\sim} & N_{\text{Böck}}^{\text{cyc}}(S \cdot N^w C) \\
\end{array} \]

is homotopy cartesian

Theorem (Waldhausen/McCarthy)

The square

\[\begin{array}{ccc}
N_{\text{Böck}}^{\text{cyc}}(S \cdot N^w C^q) & \xrightarrow{\sim} & N_{\text{Böck}}^{\text{cyc}}(S \cdot N^q C^q) \\
N_{\text{Böck}}^{\text{cyc}}(S \cdot N^w C) & \xrightarrow{\sim} & N_{\text{Böck}}^{\text{cyc}}(S \cdot N^q C) \\
\end{array} \]

is homotopy cartesian
Ausoni–Rognes Computations

Ausoni and Ausoni–Rognes compute

- $K(ku)$ and $K(\ell_p^\wedge)$
- $K(KU)$ and $K(L_p^\wedge)$

mod p and v_1 assuming:

- Localization sequence in K-theory

\[
K(H\mathbb{Z}) \to K(ku) \to K(KU) \to K(H\mathbb{Z}_p^\wedge) \to K(\ell_p^\wedge) \to K(L_p^\wedge) \to
\]

- Localization sequence in THH

\[
THH(H\mathbb{Z}) \to THH(ku) \to THH(KU) \to THH(H\mathbb{Z}_p^\wedge) \to THH(\ell_p^\wedge) \to THH(L_p^\wedge) \to
\]
Ausoni–Rognes Computations

Ausoni and Ausoni–Rognes compute

- $K(ku)$ and $K(\ell_p^\wedge)$
- $K(KU)$ and $K(L_p^\wedge)$

mod p and v_1 assuming:

- Localization sequence in K-theory

$$K(H\mathbb{Z}) \to K(ku) \to K(KU) \to$$
$$K(H\mathbb{Z}_p^\wedge) \to K(\ell_p^\wedge) \to K(L_p^\wedge) \to$$

- Localization sequence in THH

$$THH(H\mathbb{Z}) \to THH(ku) \to THH(KU) \to$$
$$THH(H\mathbb{Z}_p^\wedge) \to THH(\ell_p^\wedge) \to THH(L_p^\wedge) \to$$
Ausoni–Rognes Computations

Ausoni and Ausoni–Rognes compute

- $K(ku)$ and $K(\ell_p^\wedge)$
- $K(KU)$ and $K(L_p^\wedge)$

mod p and v_1 assuming:

- Localization sequence in K-theory

\[
K(H\mathbb{Z}) \to K(ku) \to K(KU) \to K(H\mathbb{Z}_p^\wedge) \to K(\ell_p^\wedge) \to K(L_p^\wedge) \to
\]

- Localization sequence in THH

\[
THH(H\mathbb{Z}) \to THH(ku) \to THH(KU) \to THH(H\mathbb{Z}_p^\wedge) \to THH(\ell_p^\wedge) \to THH(L_p^\wedge) \to
\]
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

$$
\begin{array}{ccc}
\text{Ob}(S \cdot N^w C^q) & \rightarrow & \text{Ob}(S \cdot N^q C^q) \\
\downarrow & & \downarrow \\
\text{Ob}(S \cdot N^w C) & \rightarrow & \text{Ob}(S \cdot N^q C)
\end{array}
$$

is homotopy cartesian

But now:

$\mathcal{C} =$ finite cell ku-modules

$w =$ weak equivalences

$q =$ maps that become weak equivalences after inverting Bott element

$\text{Ob } S_\bullet(_)$ is the K-theory of a Waldhausen category
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

\[
\begin{array}{ccc}
\text{Ob}(S \cdot N^w V \cdot C^q) & \rightarrow & \text{Ob}(S \cdot N^q V \cdot C^q) \\
\downarrow & & \downarrow \\
\text{Ob}(S \cdot N^w V \cdot C) & \rightarrow & \text{Ob}(S \cdot N^q V \cdot C)
\end{array}
\]

is homotopy cartesian

But now:

- $C = $ finite cell ku-modules
- $w = $ weak equivalences
- $q = $ maps that become weak equivalences after inverting Bott element

$\text{Ob } S \cdot (_)$ is the K-theory of a Waldhausen category
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

$\text{Ob}(S \cdot N^w C^q) \rightarrow \text{Ob}(S \cdot N^q C^q)$

$\text{Ob}(S \cdot N^w C) \rightarrow \text{Ob}(S \cdot N^q C)$

is homotopy cartesian

But now:

$C = \text{finite cell } ku\text{-modules}$

$w = \text{weak equivalences}$

$q = \text{maps that become weak equivalences after inverting Bott element}$

Devissage theorem identifying $\text{Ob}(S \cdot N^w C^q)$ as $K(H\mathbb{Z})$
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

$$
\begin{array}{ccc}
\text{Ob}(S \cdot N^w C^q) & \longrightarrow & \text{Ob}(S \cdot N^q C^q) \\
\downarrow & & \downarrow \\
\text{Ob}(S \cdot N^w C) & \longrightarrow & \text{Ob}(S \cdot N^q C)
\end{array}
$$

is homotopy cartesian

But now:

$C = $ finite cell ku-modules

$w = $ weak equivalences

$q = $ maps that become weak equivalences after inverting Bott element

Devissage theorem identifying $\text{Ob}(S \cdot N^w C^q)$ as $K(H\mathbb{Z})$
First localization sequence for \(THH \)

Categories \(N_m^w C \) not exact categories, but are *spectral categories*

Use natural mapping spectra in \(C \).

Get mapping spectra for diagram categories

\[
N_m^w C, \quad S_n N_m^w C, \quad S_n N_m^w C^q, \quad \text{etc.}
\]

Then apply \(N_{\text{Bök}}^{\text{cyc}} \) to square

\[
\begin{align*}
S \cdot N^w C^q & \rightarrow S \cdot N^q C^q \\
\downarrow & \\
S \cdot N^w C & \rightarrow S \cdot N^q C
\end{align*}
\]
First localization sequence for \(THH \)

Categories \(N^w_mC \) not exact categories, but are \textit{spectral categories}

Use natural mapping spectra in \(C \).

Get mapping spectra for diagram categories

\[
N^w_mC, \quad S_nN^w_mC, \quad S_nN^w_mC^q, \quad \text{etc.}
\]

Then apply \(N^\text{cyc}_{\text{B"ok}} \) to square

\[
\begin{array}{ccc}
S \cdot N^w_mC^q & \rightarrow & S \cdot N^q_mC^q \\
\downarrow & & \downarrow \\
S \cdot N^w_mC & \rightarrow & S \cdot N^q_mC
\end{array}
\]
First localization sequence for THH

Categories $N^w_m C$ not exact categories, but are *spectral* categories

Use natural mapping spectra in C.

Get mapping spectra for diagram categories

$N^w_m C$, $S_n N^w_m C$, $S_n N^w_m C^q$, etc.

Then apply $N^{cyc}_{Bök}$ to square

$$
\begin{align*}
S \cdot N^w C & \rightarrow S \cdot N^q C^q \\
\downarrow & \\
S \cdot N^w C & \rightarrow S \cdot N^q C
\end{align*}
$$
First localization sequence for \(THH\)

Categories \(N^w_mC\) not exact categories, but are *spectral categories*

Use natural mapping spectra in \(C\).

Get mapping spectra for diagram categories

\[N^w_mC, \quad S_nN^w_mC, \quad S_nN^w_MC^q, \quad \text{etc.}\]

Then apply \(N^\text{cyc}_{\text{Bök}}\) to square

\[
\begin{array}{ccc}
S\cdot N^w_MC^q & \rightarrow & S\cdot N^q_NC^q \\
\downarrow & & \downarrow \\
S\cdot N^w_C & \rightarrow & S\cdot N^q_C
\end{array}
\]
First localization sequence for \(\text{THH} \)

Categories \(N^w_m C \) not exact categories, but are *spectral categories*

Use natural mapping spectra in \(C \).

Get mapping spectra for diagram categories

\[
N^w_m C, \quad S_n N^w_m C, \quad S_n N^w_m C^q, \quad \text{etc.}
\]

Then apply \(N^\text{cyc} \) to square

\[
S \bullet N^w C^q \rightarrow S \bullet N^q C^q \\
\downarrow \quad \downarrow \\
S \bullet N^w C \quad
ightarrow \quad S \bullet N^q C
\]
First localization sequence for THH

Categories $N^w_m C$ not exact categories, but are *spectral categories*

Use natural mapping spectra in C.

Get mapping spectra for diagram categories

$$N^w_m C, \quad S_n N^w_m C, \quad S_n N^w_mC^q, \quad \text{etc.}$$

Then apply $N^{cyc}_{Bök}$ to square

$$S \cdot N^w_mC^q \rightarrow S \cdot N^q_mC^q$$

$$\downarrow \quad \downarrow$$

$$S \cdot N^w_C \rightarrow S \cdot N^q_C$$
First localization sequence for \textit{THH}

Categories $N^w_m \mathcal{C}$ not exact categories, but are \textit{spectral categories}

Use natural mapping spectra in \mathcal{C}.

Get mapping spectra for diagram categories

$N^w_m \mathcal{C}$, $S_n N^w_m \mathcal{C}$, $S_n N^w_m \mathcal{C}^q$, etc.

Then apply $N^\text{cyc}_{\text{Bök}}$ to square

\[
\begin{array}{ccc}
S_n N^w_m \mathcal{C} & \rightarrow & S_n N^q \mathcal{C} \\
\downarrow & & \downarrow \\
S_n N^w_m \mathcal{C} & \rightarrow & S_n N^q \mathcal{C}
\end{array}
\]
First localization sequence for \(THH \) II

Get homotopy (co)cartesian square

\[
\begin{align*}
N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C^q) & \rightarrow N_{\text{Bök}}^{\text{cyc}}(S \cdot N^q C^q) \\
\downarrow & \\
N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C) & \rightarrow N_{\text{Bök}}^{\text{cyc}}(S \cdot N^q C)
\end{align*}
\]

and cofiber sequence

\[
THH(N^w C^q) \rightarrow THH(ku) \rightarrow THH(N^q C) \rightarrow
\]

But \(THH(N^q C) \simeq THH(KU) \)
and \(THH(N^q C^q) \not\simeq THH(H\mathbb{Z}) \)
First localization sequence for THH II

Get homotopy (co)cartesian square

$\mathcal{N}^{\text{cyc}}_{\text{B"ok}}(S \cdot N_w^q C_q) \rightarrow \mathcal{N}^{\text{cyc}}_{\text{B"ok}}(S \cdot N_q^q C_q)$

$\downarrow \downarrow \downarrow$

$\mathcal{N}^{\text{cyc}}_{\text{B"ok}}(S \cdot N_w^w C) \rightarrow \mathcal{N}^{\text{cyc}}_{\text{B"ok}}(S \cdot N_q^q C)$

and cofiber sequence

$THH(N_w^q C_q) \rightarrow THH(ku) \rightarrow THH(N_q^q C) \rightarrow$

But $THH(N_q^q C) \simeq THH(KU)$

and $THH(N_q^q C_q) \nRightarrow THH(H\mathbb{Z})$
First localization sequence for \(THH \) II

Get homotopy (co)cartesian square

\[
\begin{align*}
N^\text{cyc}_{Bök}(S \cdot N^w C^q) & \to N^\text{cyc}_{Bök}(S \cdot N^q C^q) \\
\downarrow & \\
N^\text{cyc}_{Bök}(S \cdot N^w C) & \to N^\text{cyc}_{Bök}(S \cdot N^q C)
\end{align*}
\]

and cofiber sequence

\[
\text{THH}(N^w C^q) \to \text{THH}(ku) \to \text{THH}(N^q C)
\]

But \(\text{THH}(N^q C) \simeq \text{THH}(KU) \)
and \(\text{THH}(N^q C^q) \not\simeq \text{THH}(H\mathbb{Z}) \)
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \to \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \to \]

“on” means “supported on”

Using \(THH \) of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \to \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \to \]

“on” means “supported on”

Using \(THH \) of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \to \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \to \]

“on” means “supported on”

Using THH of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \to \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \to \]

“on” means “supported on”

Using THH of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \to \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \to \]

“on” means “supported on”

Using \(THH \) of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
Localization sequence for \(THH \) of schemes

When \(X = \text{Spec} \, R \) for any commutative ring \(R \), we can use \(C = C_{HR} \) finite cell \(HR \)-modules.

Then cofiber sequence

\[
\text{THH}(N_w^r C_{HR}^q) \to \text{THH}(N_w^r C_{HR}) \to \text{THH}(N_q^r C_{HR}) \to
\]

is equivalent to localization sequence for \(THH \) of schemes

\[
\text{THH}(X \text{ on } Y) \to \text{THH}(X) \to \text{THH}(X - Y) \to
\]

For example, for \(R \) a discrete valuation ring, with residue field \(k \) and field of fractions \(F \), this is a sequence

\[
\text{THH}(\text{Spec} \, R \text{ on } \text{Spec} \, k) \to \text{THH}(R) \to \text{THH}(F) \to
\]

Because of this connection, will call this \(THH \) sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Localization sequence for THH of schemes

When $X = \text{Spec } R$ for any commutative ring R, we can use $C = C_{HR}$ finite cell HR-modules.

Then cofiber sequence

$$THH(N^w_c q_{HR}) \to THH(N^w_c C_{HR}) \to THH(N^q_c C_{HR}) \to$$

is equivalent to localization sequence for THH of schemes

$$THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to$$

For example, for R a discrete valuation ring, with residue field k and field of fractions F, this is a sequence

$$THH(\text{Spec } R \text{ on Spec } k) \to THH(R) \to THH(F) \to$$

Because of this connection, will call this THH sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Localization sequence for THH of schemes

When $X = \text{Spec } R$ for any commutative ring R, we can use $C = C_{HR}$ finite cell HR-modules.

Then cofiber sequence

$$THH(N^w q C_{HR}) \to THH(N^w C_{HR}) \to THH(N^q C_{HR}) \to$$

is equivalent to localization sequence for THH of schemes

$$THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to$$

For example, for R a discrete valuation ring, with residue field k and field of fractions F, this is a sequence

$$THH(\text{Spec } R \text{ on } \text{Spec } k) \to THH(R) \to THH(F) \to$$

Because of this connection, will call this THH sequence the "Thomason–Trobaugh" sequence to distinguish from the other "Hesselholt–Madsen" sequence.
Localization sequence for \(THH \) of schemes

When \(X = \text{Spec } R \) for any commutative ring \(R \), we can use \(C = C_{HR} \) finite cell \(HR \)-modules.

Then cofiber sequence

\[
THH(N^w q C_{HR}) \to THH(N^w q C) \to THH(N^q C_{HR}) \to
\]

is equivalent to localization sequence for \(THH \) of schemes

\[
THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \to
\]

For example, for \(R \) a discrete valuation ring, with residue field \(k \) and field of fractions \(F \), this is a sequence

\[
THH(\text{Spec } R \text{ on } \text{Spec } k) \to THH(R) \to THH(F) \to
\]

Because of this connection, will call this \(THH \) sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an *exact* category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a *spectral* category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an *exact* category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a *spectral* category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an exact category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a spectral category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an *exact* category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a *spectral* category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Mapping Sets vs. Mapping Spaces

Remarks on mapping sets in Hesselholt-Madsen construction

- Could have used just non-negative chain complexes instead of integer graded chain complexes
- Could have used simplicial modules instead of non-negative chain complexes
- Could have used mapping spaces (simplicial sets) instead of mapping sets

\[
N_{\text{B{"o}k}}^{\text{cyc}}(S \cdot N^w \mathcal{C}) \cong N_{\text{B{"o}k}}^{\text{cyc}}(S \cdot N^w \mathcal{C}) \\
\cong N_{\text{B{"o}k}}^{\text{cyc}}(S \cdot \bar{N}^w \mathcal{C}) \cong N_{\text{B{"o}k}}^{\text{cyc}}(S \cdot \mathcal{C})
\]
Mapping Sets vs. Mapping Spaces

Remarks on mapping sets in Hesselholt-Madsen construction

- Could have used just non-negative chain complexes instead of integer graded chain complexes
- Could have used simplicial modules instead of non-negative chain complexes
- Could have used mapping spaces (simplicial sets) instead of mapping sets

\[
\mathcal{N}^{\text{cyC}}_{\text{Bök}}(S \cdot N^w_C) \simeq \mathcal{N}^{\text{cyC}}_{\text{Bök}}(S \cdot N^w_C) \\
\simeq \mathcal{N}^{\text{cyC}}_{\text{Bök}}(S \cdot \tilde{N}^w_C) \simeq \mathcal{N}^{\text{cyC}}_{\text{Bök}}(S \cdot C)
\]
Mapping Sets vs. Mapping Spaces

Remarks on mapping sets in Hesselholt-Madsen construction

- Could have used just non-negative chain complexes instead of integer graded chain complexes
- Could have used simplicial modules instead of non-negative chain complexes
- Could have used mapping spaces (simplicial sets) instead of mapping sets

\[N_{\text{Bök}}^{\text{cyc}}(S_\bullet \mathcal{N}^w \mathcal{C}_\bullet) \simeq N_{\text{Bök}}^{\text{cyc}}(S_\bullet \mathcal{N}^w \mathcal{C}_\bullet) \]

\[\simeq N_{\text{Bök}}^{\text{cyc}}(S_\bullet \mathcal{N}^\bar{w} \mathcal{C}_\bullet) \simeq N_{\text{Bök}}^{\text{cyc}}(S_\bullet \mathcal{C}_\bullet) \]
Mapping Sets vs. Mapping Spaces

Remarks on mapping sets in Hesselholt-Madsen construction

- Could have used just non-negative chain complexes instead of integer graded chain complexes
- Could have used simplicial modules instead of non-negative chain complexes
- Could have used mapping spaces (simplicial sets) instead of mapping sets

\[
\text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w_C) \cong \text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w_{C'}) \\
\cong \text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w_{C'}) \cong \text{N}^\text{cyc}_{\text{Bök}}(S \cdot C_\psi)
\]
Mapping Sets vs. Mapping Spaces

Remarks on mapping sets in Hesselholt-Madsen construction

- Could have used just non-negative chain complexes instead of integer graded chain complexes
- Could have used simplicial modules instead of non-negative chain complexes
- Could have used mapping spaces (simplicial sets) instead of mapping sets

$$N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot C) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot C)$$

$$\cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot \overline{C}) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot \overline{C})$$
Mapping Sets vs. Mapping Spaces

Remarks on mapping sets in Hesselholt-Madsen construction

- Could have used just non-negative chain complexes instead of integer graded chain complexes
- Could have used simplicial modules instead of non-negative chain complexes
- Could have used mapping spaces (simplicial sets) instead of mapping sets

\[
\text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w C) \cong \text{N}^\text{cyc}_{\text{Bök}}(S \cdot N^w C) \cong \text{N}^\text{cyc}_{\text{Bök}}(S \cdot C)
\]
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
 - Pushouts over cofibration (including sums)
 - Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Connective spectral enrichment

From mapping space $\mathcal{C}(X, Y)$ get connective spectrum from gamma space

$$\mathcal{C}(X, Y)_m^{\Gamma} = \mathcal{C}(X, \bigvee_{m} Y)$$

Use this spectral enrichment to construct a new THH.

Definition

$$W^{\Gamma} THH(\mathcal{C}) := N^{cyc}_{Bök}(S \mathcal{C}^{\Gamma})$$
Connective spectral enrichment

From mapping space $\mathcal{C}(X, Y)$ get connective spectrum from gamma space

$$\mathcal{C}(X, Y)_m^\Gamma = \mathcal{C}(X, \bigvee_m Y)$$

Use this spectral enrichment to construct a new THH.

Definition

$$W^\Gamma THH(C) := N_{Bök}^{\text{cyc}}(S \bullet C^\Gamma)$$
Trace Map

Definition

\[W^\Gamma \text{THH}(\mathcal{C}) := N_{\text{Bök}}^{\text{cyc}}(S \cdot C^\Gamma) \]

Again \(N_{\text{Bök}}^{\text{cyc}}(S \cdot C^\Gamma) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C^\Gamma) \)

Get trace map

\[K(\mathcal{C}) = \text{Ob}(S \cdot N^w C) \to N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C^\Gamma) \cong W^\Gamma \text{THH}(\mathcal{C}) \]

as inclusion of objects

When \(\mathcal{C} \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Trace Map

Definition

\[W^\Gamma THH(C) := N^\text{cyc}_{\text{Bök}}(S\cdot C^\Gamma) \]

Again \(N^\text{cyc}_{\text{Bök}}(S\cdot C^\Gamma) \cong N^\text{cyc}_{\text{Bök}}(S\cdot N^w C^\Gamma) \)

Get trace map

\[K(C) = \text{Ob}(S\cdot N^w C) \to N^\text{cyc}_{\text{Bök}}(S\cdot N^w C^\Gamma) \cong W^\Gamma THH(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Trace Map

Definition

\[W^\Gamma \text{THH}(C) := N^{cyc}_{\text{Bök}}(S \cdot C^\Gamma) \]

Again \(N^{cyc}_{\text{Bök}}(S \cdot C^\Gamma) \cong N^{cyc}_{\text{Bök}}(S \cdot N^w C^\Gamma) \)

Get trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N^{cyc}_{\text{Bök}}(S \cdot N^w C^\Gamma) \cong W^\Gamma \text{THH}(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Trace Map

Definition

\[W^\Gamma THH(C) := N^{cyc}_{Bök}(S \cdot C^\Gamma) \]

Again \(N^{cyc}_{Bök}(S \cdot C^\Gamma) \sim N^{cyc}_{Bök}(S \cdot N^w C^\Gamma) \)

Get trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N^{cyc}_{Bök}(S \cdot N^w C^\Gamma) \sim W^\Gamma THH(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this connective enrichment.
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma(n) = |C(X, \bigvee_{S^n} Y)| \quad C(X, Y)^S(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^\Gamma \to C(X, Y)^S \]

often connective cover, e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N^\text{cyc}_{\text{Bök}}(S \cdot N^w C^\Gamma) \cong W^\Gamma THH(C) \]

\[N^\text{cyc}_{\text{Bök}}(S \cdot N^w C^S) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma(n) = |C(X, \bigvee_{S^n} Y)| \quad C(X, Y)^S(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^\Gamma \rightarrow C(X, Y)^S \]

often connective cover,
e.g., when \(C(X, Y) \rightarrow C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \rightarrow N^{\text{cyc}}_{\text{Bök}}(S \cdot N^w C^\Gamma) \simeq W^\Gamma THH(C) \]

\[N^{\text{cyc}}_{\text{Bök}}(S \cdot N^w C^S) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma(n) = |C(X, \bigvee_{\mathcal{S}^n} Y)| \quad C(X, Y)^S(n) = |C(X, Y \otimes \mathcal{S}^n)| \]

Canonical map

\[C(X, Y)^\Gamma \rightarrow C(X, Y)^S \]

often connective cover,

e.g., when \(C(X, Y) \rightarrow C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \rightarrow N^\text{cyc}_{\text{Bök}}(S \cdot N^w C^\Gamma) \cong W^\Gamma \text{THH}(C) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma(n) = |C(X, \bigvee Y)| \quad C(X, Y)^S(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^\Gamma \to C(X, Y)^S \]

often connective cover,

e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \bullet N^w_C) \to N_{\text{Bök}}^{\text{cyc}}(S \bullet N^w_C^\Gamma) \simeq W^{\Gamma} \text{THH}(C) \]

\[N_{\text{Bök}}^{\text{cyc}}(S \bullet N^w_C^S) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma(n) = |C(X, Y)| \quad C(X, Y)^S(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^\Gamma \to C(X, Y)^S \]

often connective cover,

e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N_w C) \xrightarrow{N^{cyc}_{\text{Bök}}(S \cdot N_w C)} N^{cyc}_{\text{Bök}}(S \cdot N_w C) \cong W^\Gamma \text{THH}(C) \]
Let \(\mathcal{E} \) be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then \(W^\Gamma THH(\mathcal{E}) \) is the Dundas–McCarthy \(THH(\mathcal{E}) \).

Now let \(\mathcal{E} \) be the exact category of locally free sheaves on a quasi-projective variety \(X \).

Can give \(\mathcal{E} \) a non-connective spectra enrichment \(\mathcal{E}^S \) that correctly captures the fact that Ext in \(\mathcal{E} \) can be non-trivial.

When \(X \) is affine \(\mathcal{E} \simeq \mathcal{E}^S \) and \(THH(\mathcal{E}) \simeq THH(\mathcal{E}^S) \).

Using \(\mathcal{E}^S \), \(\pi_* THH(\mathcal{E}^S) \) is a quasi-coherent sheaf over \(X \). This does not hold in general for \(\pi_* THH(\mathcal{E}) \).
Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* THH(\mathcal{E})$.
Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* THH(\mathcal{E})$.
Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_\ast THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_\ast THH(\mathcal{E})$.
Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $\mathcal{W}^\Gamma \text{THH}(\mathcal{E})$ is the Dundas–McCarthy $\text{THH}(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $\text{THH}(\mathcal{E}) \simeq \text{THH}(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* \text{THH}(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* \text{THH}(\mathcal{E})$.
What about for categories of R-modules in spectra

Theorem (Sphere Theorem)

Let \mathcal{C}_R be the Waldhausen category of finite cell R-modules for R a connective EKMM S-algebra or R a simplicial R-algebra. Then $W^\Gamma \text{THH}(\mathcal{C}_R) \simeq \text{THH}(R)$.

Does not hold if we do not assume connective.

Theorem generalizes to any spectrally enriched Waldhausen category \mathcal{C} that has a set Q of generators such that the natural mapping spectra between objects in Q are connective.
What about for categories of R-modules in spectra

Theorem (Sphere Theorem)

Let \mathcal{C}_R be the Waldhausen category of finite cell R-modules for R a connective EKMM S-algebra or R a simplicial R-algebra. Then

$$W^\Gamma \text{THH}(\mathcal{C}_R) \simeq \text{THH}(R).$$

Does not hold if we do not assume connective.

Theorem generalizes to any spectrally enriched Waldhausen category \mathcal{C} that has a set Q of generators such that the natural mapping spectra between objects in Q are connective.
What about for categories of R-modules in spectra

Theorem (Sphere Theorem)

Let \mathcal{C}_R be the Waldhausen category of finite cell R-modules for R a connective EKMM S-algebra or R a simplicial R algebra. Then $W^\Gamma THH(\mathcal{C}_R) \cong THH(R)$.

Does not hold if we do not assume connective.

Theorem generalizes to any spectrally enriched Waldhausen category \mathcal{C} that has a set Q of generators such that the natural mapping spectra between objects in Q are connective.
Theorem

Let R be a connective EKMM S-algebra with $\pi_0 R$ connective and let \mathcal{P} be the category of cell R-algebras that have finitely many non-zero homotopy groups all of which are finitely generated. Then $W^\Gamma THH(\mathcal{P}) \simeq THH(\pi_0 R)$.

In particular $W^\Gamma THH(\mathcal{P})$ has zero negative homotopy groups. Using the natural (non-connective) mapping spectra, usually get negative homotopy groups for $THH(\mathcal{P})$ unless $R \simeq H\pi_0 R$.

For $R = ku$, $\mathcal{P} \simeq C^q$
A devissage theorem

Theorem

Let R be a connective EKMM S-algebra with $\pi_0 R$ connective and let \mathcal{P} be the category of cell R-algebras that have finitely many non-zero homotopy groups all of which are finitely generated. Then $W^\gamma \text{THH}(\mathcal{P}) \simeq \text{THH}(\pi_0 R)$.

In particular $W^\gamma \text{THH}(\mathcal{P})$ has zero negative homotopy groups. Using the natural (non-connective) mapping spectra, usually get negative homotopy groups for $\text{THH}(\mathcal{P})$ unless $R \simeq H\pi_0 R$.

For $R = ku$, $\mathcal{P} \simeq C^q$
A devissage theorem

Theorem

Let R be a connective EKMM S-algebra with $\pi_0 R$ connective and let \mathcal{P} be the category of cell R-algebras that have finitely many non-zero homotopy groups all of which are finitely generated. Then $W^\Gamma THH(\mathcal{P}) \simeq THH(\pi_0 R)$.

In particular $W^\Gamma THH(\mathcal{P})$ has zero negative homotopy groups. Using the natural (non-connective) mapping spectra, usually get negative homotopy groups for $THH(\mathcal{P})$ unless $R \simeq H\pi_0 R$.

For $R = ku$, $\mathcal{P} \simeq C^q$
Corollary: Localization sequence for the THH of topological K-theory

Define $W^\Gamma THH(ku \mid KU)$ as $N^{cyc}_{Bök}(S \cdot N^q C^\Gamma)$

Corollary

The cofiber sequence

$$N^{cyc}_{Bök}(S \cdot N^w (C^\Gamma) q) \rightarrow N^{cyc}_{Bök}(S \cdot N^w C^\Gamma) \rightarrow N^{cyc}_{Bök}(S \cdot N^q C^\Gamma) \rightarrow$$

is weakly equivalent to a cofiber sequence

$$THH(\mathbb{Z}) \rightarrow THH(ku) \rightarrow W^\Gamma THH(ku \mid KU)$$

where the map $THH(\mathbb{Z}) \rightarrow THH(ku)$ is a certain previously known transfer map.
Summary

For \mathcal{C} the category of cell ku-modules

Connective and non-connective spectral enrichments gives two different localization sequences:

\[
\begin{align*}
K(H\mathbb{Z}) & \to K(ku) \to K(KU) \\
\downarrow & \quad \downarrow & \quad \downarrow \\
THH(H\mathbb{Z}) & \to THH(ku) \to W^\Gamma THH(ku \mid KU) \\
\end{align*}
\]

$THH(ku \text{ on } H\mathbb{Z}) \quad THH(ku) \quad THH(KU)$
For \mathcal{C} the category of cell ku-modules

Connective and non-connective spectral enrichments give two different localization sequences:

\[
K(H\mathbb{Z}) \rightarrow K(ku) \rightarrow K(KU) \rightarrow \\
THH(H\mathbb{Z}) \rightarrow THH(ku) \rightarrow W^\Gamma THH(ku \mid KU) \\
THH(ku \text{ on } H\mathbb{Z}) \rightarrow THH(ku) \rightarrow THH(KU)
\]