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Overview

Cochains and Homotopy Theory

Abstract
It is known that the E-infinity algebra structure on the cochain complex
of a space contains all the homotopy theoretic information about the
space, but for partial information, less structure is needed. I will
discuss some ideas and preliminary work in this direction.

Outline
1 Distinguishing homotopy types
2 Homotopy algebras and operadic algebras
3 Formality in characteristic p
4 Generalizing AHAH
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Distinguishing Homotopy Types

Distinguishing Homotopy Types

Explanation through examples

Example (1st Semester Algebraic Topology)

Can distinguish CP2 and S4 though homology.

Example (2nd Semester Algebraic Topology)

Cannot distinguish CP2 and S2 ∨ S4 just through homology, but can
distinguish them through their cohomology with cup product.

Example (3rd or 4th Semester Algebraic Topology)

Can classify homotopy types of all simply connected spaces with
homology like CP2 or S2 ∨ S4 their cohomology with cup product.
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Distinguishing Homotopy Types

Example (4th Semester Algebraic Topology)

Cannot distinguish ΣCP2 and S3 ∨ S5 through their cohomology just
with cup product, but can distinguish them using the Sq2

Steenrod operation

These are the only 2 homotopy types of simply connected spaces with
this homology.

Example (Advanced Graduate Algebraic Topology)

Homotopy types of spaces with homology like Sn ∨ Sn+r can be
distinguished and classified using higher cohomology operations
“named” by the E2-term of the unstable Adams spectral sequence.
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Distinguishing Homotopy Types

Cohomology and Homotopy Types

Question: Is there some kind of structure of higher operations that
distinguishes all simply connected homotopy types?

Answer: Yes.

Question: Well, can you be more specific about the structure?
Answer: Operations generalizing cup and cup-i products

McClure–Smith, “Multivariable Cochain Operations and Little
n-Cubes”, 2003

Fit together into the sequence operad S

Defines an E∞ algebra structure on C∗X

Simply connected homotopy types are distinguished by the E∞
structure on the cochains.

Mandell, “Cochains and Homotopy Type”, 2006
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Distinguishing Homotopy Types

Older Work

Rational Homotopy Theory

Serre, 1950’s
Quillen, 1969
Sullivan, 1973-1977

p-adic Homotopy Theory

Adams, Mass. Inst. of Topology, 1958-1972
Kriz, 1993
Goerss, 1995
Mandell, 2001
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Distinguishing Homotopy Types

Practical Remarks

Rational Homotopy Theory

Objects: Rational commutative differential graded algebras
Standard form: Minimal model
Minimal model is easy to work with
For “formal” spaces, practical to find minimal model

p-Adic Homotopy Theory

Objects: E∞ algebras
Standard form: Cofibrant model
Cofibrant model still very big, not always easy to work with
For spaces close to K (π,n)’s, practical to find cofibrant model
No notion of “formal” space
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Distinguishing Homotopy Types

Further Directions

Explanatory examples show that you do not need to keep track of the
whole E∞ structure to say interesting things about classification of
homotopy types.

Approach: Constrain the spaces
Put a constraint on the class of spaces and determine what algebra
structure classifies them. For example, limit connectivity, dimension,
number and dimension of cells, etc.

Lots of work in this direction by Baues and collaborators

Approach: Weaken the algebraic structure
Look at an algebraic structure weaker than E∞ and see what
information is left.
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Homotopy Algebras and Operadic Algebras

Algebraic Structures

Example: Steenrod Operations

Look at H∗X as an unstable algebra over the Steenrod algebra.

This is equivalent to looking at C∗X as an H∞ algebra.

Can formulate this (±) in terms of the structure of an algebra over an
operad that maps into the McClure–Smith sequence operad.

We should look at operads mapping in to the sequence operad.

Example: Limited Steenrod Operations
McClure–Smith show that sub-operad Sn coming from first (i.e., last)
bunch of Steenrod operations is an En operad.

What information is left when we view C∗X as an En algebra?
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Homotopy Algebras and Operadic Algebras

What is left in the En Structure?

The En−1 structure on a homotopy pullback

:
Can compute En−1-structure on C∗(Y ×X Z ) as
TorC∗X (C∗Y ,C∗Z ).

Cohomology of ΩmX for m ≤ n.

Cohomology of based mapping space X M+
with domain M a

framed manifold of dimension m ≤ n.

Beilinson–Drinfeld / Lurie: “Chiral homology with coefficients in
C∗X ”

An approach to formality in characteristic p.
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Homotopy Algebras and Operadic Algebras

What is left in the En Structure?

The En−1 structure on a homotopy pullback:
Can compute En−1-structure on C∗(Y ×X Z ) as
TorC∗X (C∗Y ,C∗Z ).

Cohomology of ΩmX for m ≤ n.

Cohomology of based mapping space X M+
with domain M a

framed manifold of dimension m ≤ n.

Beilinson–Drinfeld / Lurie: “Chiral homology with coefficients in
C∗X ”

An approach to formality in characteristic p.

M.A.Mandell (IU) Cochains and Homotopy Theory Aug 31 10 / 24



Homotopy Algebras and Operadic Algebras

What is left in the En Structure?

The En−1 structure on a homotopy pullback:
Can compute En−1-structure on C∗(Y ×X Z ) as
TorC∗X (C∗Y ,C∗Z ).

Cohomology of ΩmX for m ≤ n.

Cohomology of based mapping space X M+
with domain M a

framed manifold of dimension m ≤ n.

Beilinson–Drinfeld / Lurie: “Chiral homology with coefficients in
C∗X ”

An approach to formality in characteristic p.

M.A.Mandell (IU) Cochains and Homotopy Theory Aug 31 10 / 24



Homotopy Algebras and Operadic Algebras

What is left in the En Structure?

The En−1 structure on a homotopy pullback:
Can compute En−1-structure on C∗(Y ×X Z ) as
TorC∗X (C∗Y ,C∗Z ).

Cohomology of ΩmX for m ≤ n.

Cohomology of based mapping space X M+
with domain M a

framed manifold of dimension m ≤ n.

Beilinson–Drinfeld / Lurie: “Chiral homology with coefficients in
C∗X ”

An approach to formality in characteristic p.

M.A.Mandell (IU) Cochains and Homotopy Theory Aug 31 10 / 24



Homotopy Algebras and Operadic Algebras

What is left in the En Structure?

The En−1 structure on a homotopy pullback:
Can compute En−1-structure on C∗(Y ×X Z ) as
TorC∗X (C∗Y ,C∗Z ).

Cohomology of ΩmX for m ≤ n.

Cohomology of based mapping space X M+
with domain M a

framed manifold of dimension m ≤ n.

Beilinson–Drinfeld / Lurie: “Chiral homology with coefficients in
C∗X ”

An approach to formality in characteristic p.

M.A.Mandell (IU) Cochains and Homotopy Theory Aug 31 10 / 24



Formality in Characteristic p

Formality in Characteristic Zero

Definition
A commutative differential graded Q-algebra is formal if it is
quasi-isomorphic to its cohomology though maps of commutative
differential graded algebras.

Examples
A Q-CDGA with zero differential is formal
A Q-CDGA whose cohomology is a free gr. com. algebra is formal
A Q-CDGA whose cohomology is an exterior algebra is formal

Definition
A space is rationally formal if its polynomial De Rham complex is a
formal Q-CDGA.
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Formality in Characteristic p

Examples of Rationally Formal Spaces

Spheres

Cohomology is an exterior algebra.

Lie Groups / H-Spaces

Milnor-Moore: Cohomology is a free gr. comm. algebra.

Wedges and Products of Formal Spaces

Complex Algebraic Varieties

Deligne-Griffiths-Morgan-Sullivan / Morgan

Mixed Hodge structure on cohomology gives a mixed Hodge
structure on the De Rham complex. Limits possibilities for
differentials.
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Formality in Characteristic p

Formality for E∞ Algebras

Definition
An E∞ algebra is formal if it is quasi-isomorphic to its cohomology
though maps of E∞ algebras.

Cohomology of an E∞ algebra has E∞ algebra from its graded
commutative algebra structure.

In characteristic p, cohomology of E∞ algebras have Steenrod /
Dyer-Lashof operations. For commutative algebras, all but the p-th
power operation are zero.

For spaces, the zeroth operation is the identity.

The cochain algebra of a space cannot be formal unless the
space has contractible components.
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Formality in Characteristic p

En Algebras

En algebras have operations on x ∈ H∗A

Sqmx ,Sqm−1x , . . . ,Sqm−n+1x p = 2, |x | = m

Pmx ,Pm−1x , . . . ,Pm−b(n−1)/2cx p > 2, |x | = 2m

Pmx ,Pm−1x , . . . ,Pm−bn/2cx p > 2, |x | = 2m + 1,n > 1

For |x | ≥ n, Sq0/P0 not an En algebra operation on x .

If X is an (n − 1)-connected space, no Sq0/P0 operation in En
structure on cochains
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Formality in Characteristic p

Formal En Algebras

Definition
An En algebra is formal if it is quasi-isomorphic to its graded
cohomology ring though maps of En algebras.

Cohomology of En algebras have (−n + 1)-Poisson structure, but En
structure bracket is trivial for En+1 algebras.

Which (n − 1)-connected spaces are En formal?
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Formality in Characteristic p

Loops and Suspension

Recall: For any space X , Ωn is an En space.

If X is an En−1-space, ΩX is an En space.

Because C∗ is contravariant, C∗ΣX is “like” loops of C∗X .
(Think HZΣX ∼= ΩHZX )

Theorem
The En−1 structure on C∗X determines the En structure on C∗ΣX.

Consequence

For any X , ΣnX is En formal.
Sn is En-formal but not En+1 formal.
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Formality in Characteristic p

Toward Formality

Let X be an n-connected space X of the homotopy type of a finite CW
complex.

Conjecture
After inverting finitely many primes, C∗X is quasi-isomorphic as an En
algebra to a commutative differential graded algebra.

Conjecture (Formality)
If X is rationally formal, then after inverting finitely many primes, C∗X
is En formal.
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Generalizing AHAH

Relationship to AHAH

Anick, “Hopf Algebras up to Homotopy”, 1989

Theorem (Anick)

Let R be a ring containing 1/m for m < p and let X be an r-connected
pr-dimensional CW complex. Then the Adams-Hilton model of X with
coefficients in R is the universal enveloping algebra of a Lie algebra.

Koszul dual translation (?)

Conjecture

Let R be a ring containing 1/m for m < p and let X be an r-connected
pr-dimensional simplicial complex. Then C∗(X ; R) is quasi-isomorphic
as an E2-algebra to a commutative differential graded algebra.

For a 2-connected space, after inverting finitely many primes, C∗(X ) is
quasi-isomorphic as an E2-algebra to a commutative differential
graded algebra.
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Generalizing AHAH

Conjecture

Let R be a ring containing 1/m for m < p and let X be an r-connected
pr-dimensional simplicial complex. Then C∗(X ; R) is quasi-isomorphic
as an E2-algebra to a commutative differential graded algebra.

For an r -reduced simplicial set, p-th tensor power of any reduced
cochain is in dimension ≥ p(r + 1).

Instead of looking at operad Com, we can look at a truncated
commutative algebras: Use Com′ with Com′(k) = 0 for k ≥ p.

For k < p, Com′(k) is Σk -projective.

Can do homotopy theory with Com′ algebras.

M.A.Mandell (IU) Cochains and Homotopy Theory Aug 31 19 / 24
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Generalizing AHAH

Conjecture

Let R be a ring containing 1/m for m < p and let X be an r-connected
pr-dimensional simplicial complex. Then C∗(X ; R) is quasi-isomorphic
as an E2-algebra to a commutative differential graded algebra.

The McClure–Smith sequence E2 operad S2 has

dimS2(k) = k − 1

So if X is r -reduced, the operations on reduced cochains

S2(k)⊗ (C̃∗X )⊗k → C̃∗X

land in degrees k(r + 1)− (k − 1) = kr + 1 and above.

Under Anick’s hypothesis, C̃∗X is an algebra over the truncated operad
S ′2 with S ′2(k) = 0 for k ≥ p.

We can look at obstruction theory for the S ′2-structure to extend to a
Com′-structure.
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Generalizing AHAH

The Linearity Hypothesis

Hypothesis. There exists and En operad E that acts on cochain
complexes and satisfies the dimension bound

dim E(k) = (k − 1)(n − 1).

Highest chain-level k -ary operation occurs in degree (k − 1)(n − 1).

Notes.
This is the same degree as highest non-zero homology group.
The standard En operads satisfy this bound for k = 2.
Standard E1 and E2 operads satisfy this bound for all n, k .
Standard configuration space models satisfy this bound for all n, k
(but don’t fit together into operads).
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Generalizing AHAH

A Weaker Linearity Hypothesis

At the cost of weakening the conjectures, the hypothesis can be
weakened to a linearity hypothesis

dim E(k) = a(k − 1)(n − 1) for k � 0

The little n-cubes operad of spaces has k -th space a non-compact
manifold with boundary, dimension k(n + 1).

Hypothesis can be weakened further: Operad does not have to be zero
in high dimensions, just act by zero on simplices of a given dimension.
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Generalizing AHAH

Consequences of the Linearity Hypothesis

Let X be r -reduced dimension d , so C̃∗X = 0 for ∗ ≤ r and ∗ > d

Look at En action.
E(k)⊗ (C̃∗X )⊗k → C̃∗X .

Left side is non-zero in range k(r + 1)− (k − 1)(n − 1) to kd .
Right side is non-zero in range r + 1 to d .

k(r +1)−(k−1)(n−1) = k(r +1−(n−1))+(n−1) = k(r−n+2)+n−1

So if k(r − n + 2) + n − 1 > d the map must be zero.

Limit dimension to p(r − n + 2)− n − 2 or even p(r − n + 2).
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Generalizing AHAH

Generalizing Anick’s HAH Theorem

Conjecture

Let R be a ring containing 1/m for m < p and let X be an r-connected
p(r − n + d)-dimensional simplicial complex. Then C∗(X ; R) is
quasi-isomorphic as an En-algebra to a commutative differential
graded algebra.
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