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Overview

Which cobordism invariants are realized as maps of highly structured
ring spectra?
@ Joint work with Greg Chadwick (UC Riverside) .——

@ Builds on Greg'’s thesis:
Structured orientations of Thom spectra
(Thesis, Indiana University, 2012)
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@ Joint work with Greg Chadwick (UC Riverside)
@ Builds on Greg'’s thesis:
Structured orientations of Thom spectra
(Thesis, Indiana University, 2012)
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@ Introduction and main result
© Genera and orientations
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Overview

Which cobordism invariants are realized as maps of highly structured
ring spectra?

@ Joint work with Greg Chadwick (UC Riverside)
@ Builds on Greg'’s thesis:
Structured orientations of Thom spectra
(Thesis, Indiana University, 2012)

Outline

@ Introduction and main result

© Genera and orientations

© Multiplicative Thom isomorphism

© Topological Quillen cohomology and unstable obstructed
Atiyah-Hirzebruch spectral sequences
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Review of Genera

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an
abelian group A

M™ — ~(M) € A
such that when M is a boundary (with extra structure) v(M) = 0.
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Review of Genera

Definition
A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a
graded abelian group A.

M™ — ~(M) € Am
such that when M is a boundary (with extra structure) v(M) = 0.

Extra structure: (e.g.)
@ Oriented manifolds (MSO;)
@ Stably almost complex manifolds (MU,.)
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A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a
graded ring R,

M™ — ~(M) € Ry
such that when M is a boundary (with extra structure) v(M) = 0.
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Review of Genera

Definition
A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a
graded ring R,

M™ — ~(M) € Rn
such that when M is a boundary (with extra structure) v(M) = 0 and
forany M™ N",
V(M x N) = y(M) - 7(N) € Rmsn
Extra structure: (e.g.)
@ Oriented manifolds (MSO;)
@ Stably almost complex manifolds (MU,.)
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Review of Genera

Definition
A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a
graded ring R,

M™ — ~(M) € Rn
such that when M is a boundary (with extra structure) v(M) = 0 and
forany M™ N",
V(M x N) = (M) - /(N) € Rmsn
Extra structure: (e.g.)
@ Oriented manifolds with mapto X  (MSO.(X))
@ Stably almost complex manifolds with map to X (MU.(X))
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Review of Genera

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of
homology theory R.

M™ o (M) € Rm(X)
such that when M is a boundary (with extra structure) v(M) = 0

Extra structure: (e.g.)
@ Oriented manifolds with mapto X  (MSO.(X))
@ Stably almost complex manifolds with map to X (MU, (X))

w

M.A.Mandell (IU) Ep Genera Mar 2013 4/18



Review of Genera

Definition
A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a
multiplicative homology theory R.

M™ s (M) € Rm(X)
such that when M is a boundary (with extra structure) v(M) = 0

Extra structure: (e.g.)
@ Oriented manifolds with mapto X  (MSO.(X))
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Review of Genera

Definition
A genus is a cobordism invariant for manifolds with extra structure:
It assigns to every manifold (with extra structure) an element of a
multiplicative homology theory R.
M™ — ~(M) € Rn(X)
such that when M is a boundary (with extra structure) v(M) = 0 and
forany M™ N",
-~ Y(M x N) = 4(M) - 5(N) € Rmsn(X x Y)
- =

—

Extra structure: (e.g.)
@ Oriented manifolds with mapto X  (MSO.(X))
@ Stably almost complex manifolds with map to X (MU, (X))
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Structured Genera

Genera are maps of ring spectra MSO — R, MU — R.
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Structured Genera

Genera are maps of ring spectra MSO — R, MU — R.

Question
Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E.. ring spectra).
o ———
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Genera are maps of ring spectra MSO — R, MU — R.

Question
Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E.. ring spectra).

Which genera come from
@ Maps of commutative S-algebras = E, ring spectra

@ Maps of S-algebras = A, ring spectra ?
S = ety
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Genera are maps of ring spectra MSO — R, MU — R.

Question
Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E.. ring spectra).

Which genera come from
@ Maps of commutative S-algebras = E, ring spectra <
@ Maps of S-algebras = A, ring spectra = E; ring spectra <—
@ Maps of E, ring spectra &— ?
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Main Result

Let R be an E, ring spectrum with 7,R = 0 for all n odd.
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Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

If% € moR, Yhen any map of ring spectra MSO — R lifts to a map of
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Main Result

Theorem
Let R be an E, ring spectrum with 7,R = 0 for all n odd.

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

If% € moR, then any map of ring spectra MSO — R lifts to a map of
E> ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E, map,
and BP is an E, ring spectrum (Chadwick’s IU PhD Thesis) <—
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Main Result

Theorem

Let R be an E_, ring spectrum with 7,R = 0 for all n odd.
If there exits an E,, ring map MU — R

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

Consequence: Taking R = MU, the Quillen idempotent is an E, map,
and BP is an E, ring spectrum (Chadwick’s IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E4
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Main Result

Theorem

Let R be an E_, ring spectrum with 7,R = 0 for all n odd.
If there exits an E,, ring map MU — R

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.
Consequence: Taking R = MU, the Quillen idempotent is an E, map,
and BP is an Ej; ring spectrum (Chadwick’s IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E4
but left open the question of Quillen idempotent
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Main Result

Theorem
Let R be an E, ring spectrum with 7,R = 0 for all n odd.

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

If% € moR, then any map of ring spectra MSO — R lifts to a map of
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Main Result

Theorem

Let R be an E, ring spectrum with 7,R = 0 for all n odd.
- —

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

If% € moR, then any map of ring spectra MSO — R lifts to a map of
E> ring spectra.

Consequence: Under the hypotheses above any map of ring spectra
lifts to a map of S-algebras (A ring spectra).
—_
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Main Result

Theorem
Let R be an E, ring spectrum with 7,R = 0 for all n odd.

Then any map of ring spectra MU — R lifts to a map of E, ring spectra.

If% € moR, then any map of ring spectra MSO — R lifts to a map of
E> ring spectra.

Consequence: Under the hypotheses above any map of ring spectra
lifts to a map of S-algebras (A ring spectra).

Proof: Calculate 7, of the space of E, maps and look at the map to .,
of the space of ring spectra maps.
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Then any map of ring spectra MU — R lifts to a map of E, ring spectra.
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by Thom spectra
@ Genera are multiplicative orientations

» BU(n) classifying space for C"-vector bundles

¥ PU(n) total space of universal principal bundle
(free contractible CW U(n)-space)

~ EU(n) = PU(n) xy(n) C" total space of universal vector bundle
EU(n) = PU(n) xy(n) (C" - {0})
TU(n) = PU(n)4+ Ay(ny S?" Thom space

w

M.A.Mandell (IU) Ep Genera Mar 2013 7/18



Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by Thom spectra
@ Genera are multiplicative orientations

w

M.A.Mandell (IU) Ep Genera Mar 2013 7/18



Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by Thom spectra
@ Genera are multiplicative orientations

w

M.A.Mandell (IU) Ep Genera Mar 2013 7/18



Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

w

M.A.Mandell (IU) Ep Genera Mar 2013 7/18



Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(n))
that restricts to a generator of R2"(C", C" — {0}) on each tiber (of BU(n)).
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(n))
that restricts to a generator of R2"(C",C" — {0}) on each fiber (of BU(n)).

Multiplicative:
@ Restricts to unit element of R2"(C",C" — {0})
e RPM(EU(m),EU(m)) © R2"(EU(n), EU(n))

R2m+2n((EU( m), EU(m)) x (EU(n), EU(n)))
— REMEY(EU(m + n), EU(m + )
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(n))
that restricts to a generator of R2"(C",C" — {0}) on each fiber (of BU(n)).

Multiplicative:
@ Restricts to unit element of R2"(C",C" — {0})

@ R2™M(EU(m),EU(m)) © RE"(EU(n), EU(n))
— REmt2n((EU(m), EU(m)) x (EU(n), EU(n)))

o

— R2M20(EU(m + n), EU(m + n))
Excision: R2"(EU(n), Eugn)) =~ R20(TU(n)).
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Genera and Orientations

Pontryagin-Thom theorem
@ Cobordism theories are represented by
@ Genera are multiplicative orientations

An R-orientation for C"-vector bundles is an element of R2"(EU(n), EU(n))
that restricts to a generator of R2"(C",C" — {0}) on each fiber (of BU(n)).
Multiplicative:
@ Restricts to unit element of R2"(C",C" — {0})
@ R2™M(EU(m),EU(m)) © RE"(EU(n), EU(n))
— REMHEN((EU(m), EU(m)) x (EU(n), EU(n)))

o

— R2M20(EU(m + n), EU(m + n))
Excision: R2"(EU(n), EU(n)) = RZ(TU(n)).

MU = colim £, TU(n) [MU.R] = R(MU) = lim B?"(TU(n)) 11}

—_
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The Thom Isomorphism

Thom diagonal UM = TU A Bl
MU — MU N BU,

—
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The Thom Isomorphism

Thom diagonal
MU — MU N BU4

Gives an action
R*(MU) ® R*(BU) — R*(MU)

—_—
—_—
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The Thom Isomorphism

Thom diagonal

MU — MU N BU,
Gives an action

R*(MU) @ R*(BU) — R*(MU)
@' fAg
-~ —  MU—>MUABU. L% RARSR
g 1°BU - R[” - v sl
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The Thom Isomorphism

Thom diagonal
MU — MU N BU,
Gives an action

R*(MU) © R*(BU) — R*(MU)
S } _

fAg
g: ¥BU — R

MU—-MUNBU, — RANR—R

Taking f to be a fixed orientation, get a map

R*BU — R*MU

_——
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The Thom Isomorphism

Thom diagonal
MU — MU N BU4

Gives an action
R*(MU) ® R*(BU) — R*(MU)

f: MU — R fAg
— MU—-MUNBU, — RANR—R
9:X¥YBU—~ R

Taking f to be a fixed orientation, get a map
R*BU — R*MU

Thom Isomorphism: This map is an isomorphism
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Multiplicative Structure

Thom diagonal
MU — MU N BU4
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Multiplicative Structure

Thom diagonal
MU — MU N BU4

is a map of ring spectra [Mahowald]
—

MU A MU — (MU A BUL) A (MU A BUL) =— MU A MU A (BU x BU),

| |

MU MU A BUL
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Multiplicative Structure

Thom diagonal
MU — MU N BU4

—_—
is a map of ring spectra [Mahowald] in fact E., ring spectra [Lewis]

MU A MU — (MU A BUL) A (MU A BUL) =— MU A MU A (BU x BU),

| |

MU MU A BUL
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Multiplicative Orientations

For a multiplicative orientation o
Thom map @ (@ R (M

g:I*BU—R =  MU—>MUABU, <, RAR—R
———
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Multiplicative Orientations

For a multiplicative orientation o

Thom map
g:x¥BU— R — MU — MU A BU, 22% RAR— R
R Qr—j 6/—3
i
@ Ri t YBU - R
ing spectra maps ¥°BU — in R(BU)
= H-space maps BU — Q>°R*
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Multiplicative Orientations

For a multiplicative orientation o

Thom map

g:IBU—-R =  MU—->MUABU, 2% RAR—R

takes

o Ri t Y*°BU —+ R
ing spectra maps X BU — } in RO(BU)

——

= H-space maps BU — Q> R*
to
@ Ring spectra maps MU — Rin RO(MU)

—_——
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Quillen’s Theorem

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)
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Quillen’s Theorem

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU) <—
to maps of ring spectra in [MU, R] = RO(MU) ~—

Theorem (Quillen)

Maps of ring spectra i :/ are in one-to-one correspondence
with elements of &(TU ))Xhat restrict to the unit element of R?(S?)
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Quillen’s Theorem

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Quillen)

Maps of ring spectra in RO(MU) are in one-to-one correspondence
with elements of R?(TU(1)) that restrict to the unit element of R?(S?)
—

When a map of ring spectra MU — R exists, then:

@ The maps of ring spectra in Rog MU) are exactly the maps that
correspond to maps of H-spaces in R°(BU) and
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Quillen’s Theorem

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Quillen)

Maps of ring spectra in RO(MU) are in one-to-one correspondence
with elements of R?(TU(1)) that restrict to the unit element of R?(S?)

—
When a map of ring spectra MU — R exists, then:

@ The maps of ring spectra in Rog MU) are exactly the maps that
correspond to maps of H-spaces in R°(BU) and

@ Are in one-to-one correspondence with elements of R°(BU(1)) via

the map on RO induced by BU(1) — BU.
p y BU(1) QWC&&?

~—
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Quillen’s Theorem

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Quillen)

Maps of ring spectra in RO(MU) are in one-to-one correspondence
with elements of R?(TU(1)) that restrict to the unit element of R?(S?)

When a map of ring spectra MU — R exists, then:

@ The maps of ring spectra in R°(MU) are exactly the maps that
correspond to maps of H-spaces in R°(BU) and

@ Are in one-to-one correspondence with elements of R°(BU(1)) via
the map on R® induced by BU(1) — BU.

And, well, you know, something about formal group laws llJ
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Quillen’s Theorem

For a multiplicative orientation, the Thom map takes
maps of H-spaces in [BU, Q°R*] = R%(BU)
to maps of ring spectra in [MU, R] = R°(MU)

Theorem (Quillen)

Maps of ring spectra in R°(MU) are in one-to-one correspondence

with elements of R2(TU(1)) that restrict to the unit element of R?(S?)
Always holds

when R is even
@ The maps of ring spectra in R°(MU) are exactly the maps that
correspond to maps of H-spaces in R°(BU) and

@ Are in one-to-one correspondence with elements of R°(BU(1)) via
the map on R® induced by BU(1) — BU.

When a map of ring spectra MU — R exists, <—

And, well, you know, something about formal group laws llJ
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E, genera

Assume that Ris E, ando: MU — Ris E,

Thom map

g:IBU—-R =  MU—->MUABU, 2% RAR—R
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E, genera

Assume that Ris E, ando: MU — Ris E,
Thom map
g:Xx¥BU—R — MU—>MU/\BU+ﬂ>R/\F.’—>R

Fact:

@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]
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Assume that Ris E, ando: MU — Ris E,

Thom map

g:¥*BU—-R =  MU-—MUABU, 2% RAR—

— —

Fact:

@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,then RAR — Ris E,_1 [Dunn]
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E, genera

Assume that Ris E,,1ando: MU — Ris E,
Thom map
g:Xx¥BU—R — MU—>MU/\BU+ﬂ>R/\F.’—>R

Fact:

@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,.1then RAR — Ris E, [Dunn]

Observation

If Ris E, 4+ and then we have a natural action of ace of E, maps
\ En(BU, Q> R*) bn the space of E, ring maps £,(MU, R).
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E, genera

Assume that Ris E,,1ando: MU — Ris E,

-~ 20—
Thom map

g:IBU—-R =  MU—->MUABU, 2% RAR—R

Fact:

@ Space of E, ring maps ~5°BU — R isomorphic to space of Ep,
maps BU — Q>*°R* [May-Quinn-Ray-Tornehave]

@ IfRis E,.1then RAR — Ris E, [Dunn]

Observation

If Ris E,,1 and then we have a natural action of the space of E, maps
En(BU, Q>*R*) on the space of E, ring maps £,(MU, R).
’_(—/_lsl

If non-empty, we get a map &,(BU, Q>*R*) — £,(MU, R). IIJ
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,

Thom map
g:Xx¥BU—R = MU—>MU/\BU+ﬂ>R/\F.’—>R

induces a map £x(BU,Q*°R*) ~ Ex(X°BU, R) — Ex(MU, R)

w
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,
Thom map

9:X¥YBU—~R = MU—>MU/\BU+m>R/\F1’—>F1’
induces a map £x(BU,Q*°R*) ~ Ex(X°BU, R) — Ex(MU, R)

Theorem
This map is a weak equivalence.
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,
Thom map

9:X¥YBU—~R = MU—>MU/\BU+m>R/\F1’—>F1’
induces a map £,(BU,Q*R*) ~ Ex(X°BU, R) — En(_Aiy,Z)

Theorem
This map is a weak equivalence.

@ Suffices to consider the case when R is connective
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Multiplicative Thom Isomorphism

Assume that Ris E,,1ando: MU — Ris E,
Thom map

9:X¥YBU—~R = MU—>MU/\BU+m>R/\F1’—>F1’
induces a map £x(BU,Q*°R*) ~ Ex(X°BU, R) — Ex(MU, R)

Theorem
This map is a weak equivalence.

@ Suffices to consider the case when R is connective
@ Look at Postnikov tower of R

w

M.A.Mandell (IU) Ep Genera Mar 2013 13/18



Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

=

w
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Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R— R(0) = HZ
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R— R(1) — R(0) = HZ
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups

R— ---— R({2) - R(1) - R(0) = HZ
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.

Form Postnikov tower by killing higher homotopy groups
R— ---— R(2)— R(1) — R(0) = HZ

in the category of E, ring spectra.

w
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.
Form Postnikov tower by killing higher homotopy groups

R— ---— R(2)— R(1) — R(0) = HZ
in the category of E, ring spectra.

Magic Fact (Kriz)
This is a tower of principal fibrations of E, ring spectra
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Postnikov Towers of E, ring spectra

Let R be a connective E, ring spectrum and let Z = ngR.
Form Postnikov tower by killing higher homotopy groups

R— ---— R(2)— R(1) — R(0) = HZ
in the category of E, ring spectra.

Magic Fact (Kriz)
This is a tower of principal fibrations of E, ring spectra
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Topological Quillen Cohomology

-~
HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)
M 2 edJls
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Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

Obstruction theory
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Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

~

Obstruction theory ﬁ&(

@ Obstruction in H/+2(A miy1R) to
lifting an Ej, ring map A— R(j)toan E,ringmap A — R(j +1)
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Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

Obstruction theory
@ Obstruction in H+2(A; 7,1 R) to
lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)
@ The space of lifts is either empty or is a “free orbit” on the
grouplike topological monoid

Enyrz(A HZ V XM Hrj 4 R)
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Topological Quillen Cohomology

HEH(A; M) = ngn/Hz(A, HZ v ¥*HM)

Obstruction theory
@ Obstruction in H+2(A; 7,1 R) to
lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)
@ The space of lifts is either empty or is a “free orbit” on the
grouplike topological monoid

Enymz(AHZ v T Hp 1 R) o Q€n iz (A HZ V £/ Hrjy4 R)
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Topological Quillen Cohomology

H>|< A M = WOgn/HZ A HZ\/Z*HM
Obstruction theory
@ Obstruction in H+2(A; 7,1 R) to

lifting an E, ring map A — R{j) toan E,ringmap A — R+ 1)
@ The space of lifts is either empty or is a “free orbit” on the
grouplike topological monoid

Enymz(A HZ V ST Hrj g R) = QEn z(A, HZ vV X2 Hrj 4 R)

Atiyah-Hirzebruch Spectral Sequence

For E, ring spectra A, R (with mild hypotheses on A), there is a natural
“obstructed” spectral sequence

Efq = HE(AimgR) = mq—pEn(A, R). ]
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

/\
/\MU—>HZ/\MU/\BU+—>HZ/\HZ/\BU+—>HZ/\BU+

Hz (ZXBU; —) = HE (MU; -) 2w CoesES

v
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

HZANMU — HZ NMUANBUy - HZNHZANBU, — HZ N BUL

— Hz (£ BU; —) = HE (MU; -)

Consequence

For R an E, . ring spectrum and o: MU — R an E, ring map, the
Thom map induces an isomorphism on E2-terms
[PAVE
Hgn(ZSf’; mqR) — Hgn(MU; mqR)
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

HZANMU — HZ NMUANBUy - HZNHZANBU, — HZ N BUL

— Hz (£ BU; —) = HE (MU; -)

Consequence

For R an E, 4 ring spectrumandg: MU — R an£n ring map, the
Thom map induces an isomorphism on E=-terms”

HE (£ mqR) = HE (MU; 74 R)

and an isomorphism
mEn(E°BU, R) =5 ,E,(MU, R)
= = —
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Multiplicative Thom Isomorphism

Thom isomorphism: HZ A MU =» HZ A BU, as E, HZ-algebras.

HZANMU — HZ NMUANBUy - HZNHZANBU, — HZ N BUL

— Hz (£ BU; —) = HE (MU; -)

Consequence

For R an E, . ring spectrum and o: MU — R an E, ring map, the
Thom map induces an isomorphism on E2-terms

HE (£ mqR) = HE (MU; 74 R)

and an isomorphism
m.En(E°BU, R) = m.En(MU, R)

Nothing special about BU/MU here; works for any E, Thom spectrum."lJ
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Computation

En(X°BU, R)

w
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Computation

En(EFBU, R) ~ £n(BU, 0°R*)

w
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Computation

En(EFBU, R) ~ £n(BU, 0°R*)
— &,(BU, (°R*)1)

w
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Computation

En(Z°BU, R) ~ £,(BU, Q®°R*)
- S
= £,(BU, (Q°R*)1)
~ U(B"BU, B"(Q°R);)
—_— ——

w
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Computation

En(ZFBU, R) ~ £,(BU, Q°R)
= En(BU, (Q°R¥))
~ U(B"BU, B"(Q°R);)
e

Compute using “Atiyah-Hirzebruch spectral sequence”

| H(B"BU; —L)J — HP(B"BU; mq4n(B"(Q°R)1))
—  mgin_pl(B"BU, B"(Q°R);)
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Computation

En(Z°BU, R) ~ £,(BU, Q*°R*)
= £,(BU, (Q°R*)1)
~ U(B"BU, B"(Q°R)1)

Compute using “Atiyah-Hirzebruch spectral sequence”

HP(B"BU; Rq) = HP(B"BU; g1 o( B"(QF)1))
—  mgin_pd(B"BU, B"(Q°R);)

For n=2,
H*(B?BU) = H*(BSU) = Z[cz, cs, .. |

w
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Computation

En(Z°BU, R) ~ £,(BU, Q*°R*)
= £,(BU, (Q°R*)1)
~ U(B"BU, B"(Q°R)1)

Compute using “Atiyah-Hirzebruch spectral sequence”

HP(B"BU; Ry) = HP(B"BU: mq4n(B"(Q°R)1))
—  mgin_pl(B"BU, B"(Q°R);)

For n=2,
H*(B?BU) = H*(BSU) = Z[cy, c3, . . ]
and
H*(BSU) — H*(£2BU(1))
is surjective. IIJ
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)

and m_E(BU, Q> R*) — RABU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

J
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and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
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What about for R just E?
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

lassuca
What about for R just E,? /C CorLamtlotty

2
Hz, (MU, 7) = Hg, (S BU; w) & H*2(B#BU; )

J
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Main Result

Theorem

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R just E?
Hz,(MU; ) = H, (£ BU; ) = H*"2(B"BU; )
= H**2(BSU; ) - H*(BU(1); )
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Main Result

If R is an even Ej ring spectrum, then Eo(MU, R) ~ & (BU, Q*R*)
and r_,E(BU, Q> R*) — R*(BU(1)) is surjective. Thus, every map of
ring spectra MU — R lifts to a map of E; ring spectra.

What about for R ju

Hz,(MU; ) = H, (£ BU; ) = H*"2(B"BU; )

= H*+2(BSU; ) -/ H*(BU(1); )

Careful argument with “Atiyah-Hirzebruch spectral sequence”

If R is an even E, ring spectrum then every map of ring spectra |
MU — R lifts to a map of E, ring spectra. J
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