E_n Genera

Michael A. Mandell

Indiana University

Northwestern University Workshop on Equivariant, Chromatic, and Motivic Homotopy Theory

March 28, 2012
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)

Outline
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)

Outline

1. Introduction and main result
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Builds on Greg’s thesis:
 Structured orientations of Thom spectra
 (Thesis, Indiana University, 2012)

Outline

1. Introduction and main result
2. Genera and orientations
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)

Outline

1. Introduction and main result
2. Genera and orientations
3. Multiplicative Thom isomorphism
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)

Outline

1. Introduction and main result
2. Genera and orientations
3. Multiplicative Thom isomorphism
4. Topological Quillen cohomology
Overview

Which cobordism invariants are realized as maps of highly structured ring spectra?

- Joint work with Greg Chadwick (UC Riverside)
- Builds on Greg’s thesis: Structured orientations of Thom spectra
 (Thesis, Indiana University, 2012)

Outline

1. Introduction and main result
2. Genera and orientations
3. Multiplicative Thom isomorphism
4. Topological Quillen cohomology and unstable obstructed Atiyah-Hirzebruch spectral sequences
A genus is a cobordism invariant for manifolds with extra structure: It assigns to every manifold (with extra structure) an element of an abelian group \(A \)

\[M^m \mapsto \gamma(M) \in A \]

such that when \(M \) is a boundary (with extra structure) \(\gamma(M) = 0 \).
Review of Genera

Definition

A genus is a cobordism invariant for manifolds with extra structure:
It assigns to every manifold (with extra structure) an element of an abelian group A

$$M^m \mapsto \gamma(M) \in A$$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$.

Extra structure: (e.g.)
A *genus* is a cobordism invariant for manifolds with extra structure:
It assigns to every manifold (with extra structure) an element of an abelian group A

$$M^m \mapsto \gamma(M) \in A$$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$.

Extra structure: (e.g.)
- Oriented manifolds (MSO_*)
A *genus* is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of an abelian group A

\[M^m \mapsto \gamma(M) \in A \]

such that when M is a boundary (with extra structure) $\gamma(M) = 0$.

Extra structure: (e.g.)
- Oriented manifolds (MSO_*)
- Stably almost complex manifolds (MU_*)
Definition

A *genus* is a cobordism invariant for manifolds with extra structure: It assigns to every manifold (with extra structure) an element of a graded abelian group A_*

$$M^m \mapsto \gamma(M) \in A_m$$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$.

Extra structure: (e.g.)

- Oriented manifolds (MSO_*)
- Stably almost complex manifolds (MU_*)
A *genus* is a cobordism invariant for manifolds with extra structure:
It assigns to every manifold (with extra structure) an element of a graded ring R_*

$$M^m \mapsto \gamma(M) \in R_m$$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$.

Extra structure: (e.g.)
- Oriented manifolds (MSO_*)
- Stably almost complex manifolds (MU_*)
Definition

A genus is a cobordism invariant for manifolds with extra structure:
It assigns to every manifold (with extra structure) an element of a graded ring \(R_* \)

\[
M^m \mapsto \gamma(M) \in R_m
\]
such that when \(M \) is a boundary (with extra structure) \(\gamma(M) = 0 \) and for any \(M^m, N^n \),

\[
\gamma(M \times N) = \gamma(M) \cdot \gamma(N) \in R_{m+n}
\]

Extra structure: (e.g.)
- Oriented manifolds (\(MSO_* \))
- Stably almost complex manifolds (\(MU_* \))
Review of Genera

Definition

A *genus* is a cobordism invariant for manifolds with extra structure:
It assigns to every manifold (with extra structure) an element of a
graded ring \(R_* \)

\[
M^m \mapsto \gamma(M) \in R_m
\]
such that when \(M \) is a boundary (with extra structure) \(\gamma(M) = 0 \) and
for any \(M^m, N^n \),

\[
\gamma(M \times N) = \gamma(M) \cdot \gamma(N) \in R_{m+n}
\]

Extra structure: (e.g.)

- Oriented manifolds with map to \(X \) \((MSO_*(X)) \)
- Stably almost complex manifolds with map to \(X \) \((MU_*(X)) \)
Review of Genera

Definition

A *genus* is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of homology theory R^*

$$ M^m \mapsto \gamma(M) \in R_m(X) $$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m, N^n,

$$ \gamma(M \times N) = \gamma(M) \cdot \gamma(N) \in R_{m+n} $$

Extra structure: (e.g.)

- Oriented manifolds with map to X \((MSO^*_*(X))\)
- Stably almost complex manifolds with map to X \((MU^*_*(X))\)
Review of Genera

Definition

A genus is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a multiplicative homology theory R_*

$$M^m \mapsto \gamma(M) \in R_m(X)$$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m, N^n,

$$\gamma(M \times N) = \gamma(M) \cdot \gamma(N) \in R_{m+n}$$

Extra structure: (e.g.)

- Oriented manifolds with map to X ($MSO_*(X)$)
- Stably almost complex manifolds with map to X ($MU_*(X)$)
Review of Genera

Definition

A *genus* is a cobordism invariant for manifolds with extra structure:

It assigns to every manifold (with extra structure) an element of a multiplicative homology theory R_*

$$M^m \mapsto \gamma(M) \in R_m(X)$$

such that when M is a boundary (with extra structure) $\gamma(M) = 0$ and for any M^m, N^n,

$$\gamma(M \times N) = \gamma(M) \cdot \gamma(N) \in R_{m+n}(X \times Y)$$

Extra structure: (e.g.)

- Oriented manifolds with map to X \((MSO_*(X))\)
- Stably almost complex manifolds with map to X \((MU_*(X))\)
A genus is a map of multiplicative homology theories

\[MSO_\ast \to R_\ast \quad \text{or} \quad MU_\ast \to R_\ast \]

Extra structure: (e.g.)

- Oriented manifolds with map to \(X \) \((MSO_\ast(X)) \)
- Stably almost complex manifolds with map to \(X \) \((MU_\ast(X)) \)
A genus is a map of multiplicative homology theories:

\[MSO_* \rightarrow R_* \quad \text{or} \quad MU_* \rightarrow R_* \]

or, better, a map of ring spectra:

\[MSO \rightarrow R \quad \text{or} \quad MU \rightarrow R \]

Extra structure: (e.g.)

- Oriented manifolds with map to \(X \) \((MSO_*(X))\)
- Stably almost complex manifolds with map to \(X \) \((MU_*(X))\)
Structured Genera

Genera are maps of ring spectra $MSO \rightarrow R$, $MU \rightarrow R$.

Which genera come from maps of "highly structured" ring spectra?

MSO and MU are commutative S-algebras (E_{∞} ring spectra).

Which genera come from maps of commutative S-algebras = E_{∞} ring spectra?

Maps of E_n ring spectra?
Genera are maps of ring spectra $MSO \to R$, $MU \to R$.

Question
Which genera come from maps of “highly structured” ring spectra?
Structured Genera

Genera are maps of ring spectra $MSO \to R$, $MU \to R$.

Question
Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E_∞ ring spectra).
Structured Genera

Genera are maps of ring spectra $MSO \rightarrow R$, $MU \rightarrow R$.

Question

Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E_∞ ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_∞ ring spectra
Structured Genera

Genera are maps of ring spectra $MSO \to R$, $MU \to R$.

Question

Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E_∞ ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_∞ ring spectra
- Maps of S-algebras = A_∞ ring spectra
Structured Genera

Genera are maps of ring spectra $\text{MSO} \to R$, $\text{MU} \to R$.

Question

Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E_∞ ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_∞ ring spectra
- Maps of S-algebras = A_∞ ring spectra = E_1 ring spectra ?
Genera are maps of ring spectra $MSO \rightarrow R$, $MU \rightarrow R$.

Question

Which genera come from maps of “highly structured” ring spectra?

MSO and MU are commutative S-algebras (E_∞ ring spectra).

Which genera come from

- Maps of commutative S-algebras = E_∞ ring spectra
- Maps of S-algebras = A_∞ ring spectra = E_1 ring spectra
- Maps of E_n ring spectra

?
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.

Then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.

Then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.

Then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \to R$ lifts to a map of E_2 ring spectra.

Consequence: Taking $R = MU$, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick’s IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent
Main Result

Theorem

Let R be an E_∞ ring spectrum with $\pi_n R = 0$ for all n odd. If there exists an E_∞ ring map $\text{MU} \to R$ then any map of ring spectra $\text{MU} \to R$ lifts to a map of E_2 ring spectra.

Consequence: Taking $R = \text{MU}$, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick’s IU PhD Thesis)

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent
Main Result

Theorem

Let R be an E_∞ ring spectrum with $\pi_n R = 0$ for all n odd. If there exists an E_∞ ring map $MU \to R$, then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

Consequence: Taking $R = MU$, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick’s IU PhD Thesis).

Independent of [Basterra-Mandell] which showed that BP is E_4 but left open the question of Quillen idempotent.
Main Result

Theorem

Let R be an E_∞ ring spectrum with $\pi_n R = 0$ for all n odd. If there exists an E_∞ ring map $MU \rightarrow R$, then any map of ring spectra $MU \rightarrow R$ lifts to a map of E_2 ring spectra.

Consequence: Taking $R = MU$, the Quillen idempotent is an E_2 map, and BP is an E_2 ring spectrum (Chadwick’s IU PhD Thesis).

Independent of [Basterra-Mandell] which showed that BP is E_4, but left open the question of Quillen idempotent
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.

Then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.

Then any map of ring spectra $\text{MU} \to R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $\text{MSO} \to R$ lifts to a map of E_2 ring spectra.

Consequence: Under the hypotheses above any map of ring spectra lifts to a map of S-algebras (A_∞ ring spectra).
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_nR = 0$ for all n odd.

Then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0R$, then any map of ring spectra $MSO \to R$ lifts to a map of E_2 ring spectra.

Consequence: Under the hypotheses above any map of ring spectra lifts to a map of S-algebras (A_∞ ring spectra).

Proof: Calculate π_* of the space of E_2 maps and look at the map to π_* of the space of ring spectra maps.
Main Result

Theorem

Let R be an E_2 ring spectrum with $\pi_n R = 0$ for all n odd.

Then any map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

If $\frac{1}{2} \in \pi_0 R$, then any map of ring spectra $MSO \to R$ lifts to a map of E_2 ring spectra.

Consequence: Under the hypotheses above any map of ring spectra lifts to a map of S-algebras (A_∞ ring spectra).

Proof: Calculate π_0 of the space of E_2 maps and look at the map to π_0 of the space of ring spectra maps.
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations
Genera and Orientations

Pontryagin-Thom theorem
- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

\[BU(n) \text{ classifying space for } \mathbb{C}^n\text{-vector bundles} \]
\[PU(n) \text{ total space of universal principal bundle} \]
\[\text{(free contractible CW } U(n)\text{-space)} \]
\[EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \text{ total space of universal vector bundle} \]
\[EU(n) = PU(n) \times_{U(n)} (\mathbb{C}^n \setminus \{0\}) \]
\[TU(n) = PU(n) + \wedge_{U(n)} S^{2n} \text{ Thom space} \]
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

\[
BU(n) \text{ classifying space for } \mathbb{C}^n\text{-vector bundles}
\]

\[
PU(n) \text{ total space of universal principal bundle}
\]

\[
(U(n) \text{-space})
\]

\[
EU(n) = PU(n) \times U(n) \mathbb{C}^n \text{ total space of universal vector bundle}
\]

\[
\tilde{EU}(n) = PU(n) \times U(n) (\mathbb{C}^n - \{0\})
\]

\[
TU(n) = PU(n) + \wedge U(n) S^{2n} \text{ Thom space}
\]
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

\[BU(n) \text{ classifying space for } \mathbb{C}^n \text{-vector bundles} \]
\[PU(n) \text{ total space of universal principal bundle} \]
\[\text{(free contractible CW } U(n)\text{-space)} \]
\[EU(n) = PU(n) \times_{U(n)} \mathbb{C}^n \text{ total space of universal vector bundle} \]
\[\tilde{EU}(n) = PU(n) \times_{U(n)} (\mathbb{C}^n - \{0\}) \]
\[TU(n) = PU(n) + \wedge_{U(n)} S^{2n} \text{ Thom space} \]
Pontryagin-Thom theorem

- Cobordism theories are represented by
- Genera are multiplicative orientations
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

An R-orientation for \mathbb{C}^n-vector bundles is an element of $R^{2n}(EU(n), \hat{EU}(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$ on each fiber (of $BU(n)$).

Multiplicative:

- Restricts to unit element of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$

$$R^{2m}(EU(m), \hat{EU}(m)) \otimes R^{2n}(EU(n), \hat{EU}(n)) \rightarrow R^{2m+2n}(EU(m), \hat{EU}(m)) \times (EU(n), \hat{EU}(n)))$$

$$\rightarrow R^{2m+2n}(EU(m + n), \hat{EU}(m + n))$$

Excision: $R^{2n}(EU(n), \hat{EU}(n)) \cong \tilde{R}^{2n}(TU(n))$.

$$MU = \text{colim} \sum_{-2n}^\infty TU(n) \quad [MU, R] = R^0(MU) = \lim \tilde{R}^{2n}(TU(n))$$
Genera and Orientations

Pontryagin-Thom theorem
- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

An \(R \)-orientation for \(\mathbb{C}^n \)-vector bundles is an element of \(R^{2n}(EU(n), \tilde{EU}(n)) \) that restricts to a generator of \(R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\}) \) on each fiber (of \(BU(n) \)).

Multiplicative:
- Restricts to unit element of \(R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\}) \)
- \(R^{2m}(EU(m), \tilde{EU}(m)) \otimes R^{2n}(EU(n), \tilde{EU}(n)) \rightarrow R^{2m+2n}((EU(m), \tilde{EU}(m)) \times (EU(n), \tilde{EU}(n))) \rightarrow R^{2m+2n}(EU(m+n), \tilde{EU}(m+n)) \)

Excision: \(R^{2n}(EU(n), \tilde{EU}(n)) \cong \tilde{R}^{2n}(TU(n)) \).

\[MU = \text{colim} \Sigma_{-2n}^\infty TU(n) \quad [MU, R] = R^0(MU) = \lim \tilde{R}^{2n}(TU(n)) \]
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

BU\((n) \) classifying space for \(\mathbb{C}^n \)-vector bundles
- \(PU(n) \) total space of universal principal bundle
 - (free contractible CW \(U(n) \)-space)

\[EU(n) = PU(n) \times U(n) \mathbb{C}^n \] total space of universal vector bundle
\[\tilde{EU}(n) = PU(n) \times U(n) (\mathbb{C}^n - \{0\}) \]

\[TU(n) = PU(n) + \wedge U(n) S^{2n} \] Thom space

An \(R \)-orientation for \(\mathbb{C}^n \)-vector bundles is an element of \(R^{2n}(EU(n), \tilde{EU}(n)) \) that restricts to a generator of \(R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\}) \) on each fiber (of \(BU(n) \)).

Multiplicative:

- Restricts to unit element of \(R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\}) \)
- \(R^{2m}(EU(m), \tilde{EU}(m)) \otimes R^{2n}(EU(n), \tilde{EU}(n)) \)
 \[\rightarrow R^{2m+2n}((EU(m), \tilde{EU}(m)) \times (EU(n), \tilde{EU}(n))) \]
 \[\rightarrow R^{2m+2n}(EU(m + n), \tilde{EU}(m + n)) \]

Excision: \(R^{2n}(EU(n), \tilde{EU}(n)) \cong R^{2n}(TU(n)). \)

\[MU = \text{colim} \Sigma_{-2n}^{\infty} TU(n) \]

\[[MU, R] = R^0(MU) = \text{lim} \tilde{R}^{2n}(TU(n)) \]
Genera and Orientations

Pontryagin-Thom theorem

- Cobordism theories are represented by Thom spectra
- Genera are multiplicative orientations

An R-orientation for \mathbb{C}^n-vector bundles is an element of $R^{2n}(EU(n), \hat{EU}(n))$ that restricts to a generator of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$ on each fiber (of $BU(n)$).

Multiplicative:

- Restricts to unit element of $R^{2n}(\mathbb{C}^n, \mathbb{C}^n - \{0\})$
- $R^{2m}(EU(m), \hat{EU}(m)) \otimes R^{2n}(EU(n), \hat{EU}(n))$
 \[\to R^{2m+2n}(EU(m), \hat{EU}(m)) \times (EU(n), \hat{EU}(n)) \]
 \[\to R^{2m+2n}(EU(m + n), \hat{EU}(m + n)) \]

Excision: $R^{2n}(EU(n), \hat{EU}(n)) \cong \tilde{R}^{2n}(TU(n))$.

$MU = \text{colim} \sum_{-2n}^{\infty} TU(n)$

$[MU, R] = R^0(MU) = \lim \tilde{R}^{2n}(TU(n))$
The Thom Isomorphism

Thom diagonal

\[\text{Thom diagonal} \]

\[\text{MU} \to \text{MU} \wedge \text{BU}^+ \]

Gives an action

\[R^*(\text{MU}) \otimes R^*(\text{BU}) \to R^*(\text{MU}) \]

\[f: \text{MU} \to R \]
\[g: \Sigma_+ \infty \text{BU} \to R \]

\[\implies \quad \text{MU} \to \text{MU} \wedge \text{BU}^+ \xrightarrow{f \wedge g} R \wedge R \to R \]

Taking \(f \) to be a fixed orientation, get a map

\[R^* \text{BU} \to R^* \text{MU} \]

Thom Isomorphism: This map is an isomorphism
The Thom Isomorphism

Thom diagonal

$$MU \to MU \wedge BU_+$$

Gives an action

$$R^*(MU) \otimes R^*(BU) \to R^*(MU)$$

$$f : MU \to R$$

$$g : \Sigma^\infty BU \to R$$

Taking f to be a fixed orientation, get a map

$$R^*BU \to R^*MU$$

Thom Isomorphism: This map is an isomorphism
The Thom Isomorphism

Thom diagonal

$$MU \to MU \wedge BU_+$$

Gives an action

$$R^*(MU) \otimes R^*(BU) \to R^*(MU)$$

Taking f to be a fixed orientation, get a map

$$R^*BU \to R^*MU$$

Thom Isomorphism: This map is an isomorphism
The Thom Isomorphism

Thom diagonal

\[MU \to MU \wedge BU_+ \]

Gives an action

\[R^*(MU) \otimes R^*(BU) \to R^*(MU) \]

\[\begin{cases}
 f: MU \to R \\
 g: \Sigma^\infty BU \to R
\end{cases} \quad \Rightarrow \quad \begin{cases}
 MU \to MU \wedge BU_+ \\
 R \wedge R \to R
\end{cases} \]

Taking \(f \) to be a fixed orientation, get a map

\[R^*BU \to R^*MU \]

Thom Isomorphism: This map is an isomorphism
The Thom Isomorphism

Thom diagonal

\[\text{MU} \rightarrow \text{MU} \land \text{BU}_+ \]

Gives an action

\[R^*(\text{MU}) \otimes R^*(\text{BU}) \rightarrow R^*(\text{MU}) \]

\[
\begin{align*}
 f &: \text{MU} \rightarrow R \\
g &: \Sigma^\infty \text{BU} \rightarrow R
\end{align*}
\]

\[\Rightarrow \quad \text{MU} \rightarrow \text{MU} \land \text{BU}_+ \xrightarrow{f \land g} R \land R \rightarrow R \]

Taking \(f \) to be a fixed orientation, get a map

\[R^* \text{BU} \rightarrow R^* \text{MU} \]

Thom Isomorphism: This map is an isomorphism
Thom diagonal

\[MU \to MU \wedge BU_+ \]

is a map of ring spectra [Mahowald]

\[
\begin{array}{c}
MU \wedge MU \\
\downarrow
\end{array} \quad \begin{array}{c}
(MU \wedge BU_+) \wedge (MU \wedge BU_+)
\end{array} \xrightarrow{\sim} \begin{array}{c}
MU \wedge MU \wedge (BU \times BU)_+
\end{array} \quad \begin{array}{c}
\downarrow
\end{array}
\]

\[
\begin{array}{c}
MU
\end{array} \quad \begin{array}{c}
\rightarrow
\end{array} \quad \begin{array}{c}
MU \wedge BU_+
\end{array}
\]

[Image 349x19 to 360x33]
Thom diagonal

\[\text{MU} \to \text{MU} \wedge \text{BU}_+ \]

is a map of ring spectra [Mahowald]

\[\text{MU} \wedge \text{MU} \to (\text{MU} \wedge \text{BU}_+) \wedge (\text{MU} \wedge \text{BU}_+) \overset{\text{IR}}{\to} \text{MU} \wedge \text{MU} \wedge (\text{BU} \times \text{BU})_+ \]

\[\text{MU} \to \text{MU} \wedge \text{BU}_+ \]
Thom diagonal

\[MU \to MU \wedge BU_+ \]

is a map of ring spectra [Mahowald] in fact \(E_\infty \) ring spectra [Lewis]

\[
\begin{array}{c}
\mu \wedge \mu \to (\mu \wedge BU_+) \wedge (\mu \wedge BU_+) \\
\downarrow \quad \downarrow \\
\mu \quad \mu \wedge BU_+ \\
\end{array}
\]

\[
\begin{array}{c}
\mu \wedge \mu \wedge (BU \times BU)_+ \\
\downarrow \quad \downarrow \\
\mu \wedge BU_+ \\
\end{array}
\]
Multiplicative Orientations

For a multiplicative orientation σ

Thom map

$$g : \Sigma^\infty BU \to R \quad \implies \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

takes

- Ring spectra maps $\Sigma^\infty BU \to R$ = H-space maps $BU \to \Omega^\infty R^\times$ in $R^0(BU)$

to

- Ring spectra maps $MU \to R$ in $R^0(MU)$
Multiplicative Orientations

For a multiplicative orientation σ

Thom map

\[
g: \Sigma^\infty_+ BU \to R \implies MU \to MU \wedge BU \xrightarrow{\sigma \wedge g} R \wedge R \to R
\]

takes

- Ring spectra maps $\Sigma^\infty_+ BU \to R$

 \[= H\text{-space maps } BU \to \Omega^\infty R^\times \]

 \{ \text{in } R^0(BU) \}

to

- Ring spectra maps $MU \to R$ in $R^0(MU)$
Multiplicative Orientations

For a multiplicative orientation σ

Thom map

$$g: \Sigma^\infty_+ BU \to R \implies \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

takes

- Ring spectra maps $\Sigma^\infty_+ BU \to R$

 = H-space maps $BU \to \Omega^\infty R^\times$

 \{ \text{ in } R^0(BU) \}

to

- Ring spectra maps $MU \to R$ in $R^0(MU)$
Quillen’s Theorem

For a multiplicative orientation, the Thom map takes maps of H-spaces in $[BU, \Omega^\infty R^\times] = R^0(BU)$ to maps of ring spectra in $[MU, R] = R^0(MU)$

Theorem (Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \to R$ exists, then:

- The maps of ring spectra in $R^0(MU)$ are exactly the maps that correspond to maps of H-spaces in $R^0(BU)$ and
- Are in one-to-one correspondence with elements of $R^0(BU(1))$ via the map on R^0 induced by $BU(1) \to BU$.
Quillen’s Theorem

For a multiplicative orientation, the Thom map takes maps of H-spaces in $[BU, \Omega^\infty R^{\times}] = R^0(BU)$ to maps of ring spectra in $[MU, R] = R^0(MU)$

Theorem (Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \to R$ exists, then:

- The maps of ring spectra in $R^0(MU)$ are exactly the maps that correspond to maps of H-spaces in $R^0(BU)$ and
- Are in one-to-one correspondence with elements of $R^0(BU(1))$ via the map on R^0 induced by $BU(1) \to BU$.
Quillen’s Theorem

For a multiplicative orientation, the Thom map takes maps of H-spaces in $[BU, \Omega^\infty R^\times] = R^0(BU)$ to maps of ring spectra in $[MU, R] = R^0(MU)$

Theorem (Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \rightarrow R$ exists, then:

- The maps of ring spectra in $R^0(MU)$ are exactly the maps that correspond to maps of H-spaces in $R^0(BU)$ and
- Are in one-to-one correspondence with elements of $R^0(BU(1))$ via the map on R^0 induced by $BU(1) \rightarrow BU$.
Quillen’s Theorem

For a multiplicative orientation, the Thom map takes maps of H-spaces in $[BU, \Omega^\infty R^\times] = R^0(BU)$ to maps of ring spectra in $[MU, R] = R^0(MU)$

Theorem (Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \to R$ exists, then:

- The maps of ring spectra in $R^0(MU)$ are exactly the maps that correspond to maps of H-spaces in $R^0(BU)$ and
- Are in one-to-one correspondence with elements of $R^0(BU(1))$ via the map on R^0 induced by $BU(1) \to BU$.
Quillen’s Theorem

For a multiplicative orientation, the Thom map takes maps of H-spaces in $[BU, \Omega^\infty R^\times] = R^0(BU)$ to maps of ring spectra in $[MU, R] = R^0(MU)$

Theorem (Quillen)

Maps of ring spectra in $R^0(MU)$ are in one-to-one correspondence with elements of $\tilde{R}^2(TU(1))$ that restrict to the unit element of $\tilde{R}^2(S^2)$

When a map of ring spectra $MU \to R$ exists, then:

- The maps of ring spectra in $R^0(MU)$ are exactly the maps that correspond to maps of H-spaces in $R^0(BU)$ and
- Are in one-to-one correspondence with elements of $R^0(BU(1))$ via the map on R^0 induced by $BU(1) \to BU$.

And, well, you know, something about formal group laws
Quillen’s Theorem

For a multiplicative orientation, the Thom map takes maps of \(H \)-spaces in \([BU, \Omega^\infty R^\times]\) to maps of ring spectra in \([MU, R] = R^0(MU)\)
Assume that R is E_n and $\sigma : MU \to R$ is E_n.

Thom map

$$g : \Sigma_+ \infty BU \to R \quad \Rightarrow \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

Fact:

- Space of E_n ring maps $\Sigma_+ \infty BU \to R$ isomorphic to space of E_n maps $BU \to \Omega \infty R^\times$ [May-Quinn-Ray-Tornehave]
- If R is E_n then $R \wedge R \to R$ is E_{n-1} [Dunn]
Assume that R is E_n and $\sigma : MU \to R$ is E_n.

Thom map

$$ g : \Sigma^\infty_+ BU \to R \quad \implies \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R $$

Fact:

- Space of E_n ring maps $\Sigma^\infty_+ BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^\infty R^\times$ [May-Quinn-Ray-Tornehave]
- If R is E_n then $R \wedge R \to R$ is E_{n-1} [Dunn]
Assume that R is E_n and $\sigma: MU \to R$ is E_n

Thom map

$$g: \Sigma_{+}^{\infty} BU \to R \implies MU \to MU \wedge BU_{+} \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

Fact:

- Space of E_n ring maps $\Sigma_{+}^{\infty} BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^{\infty} R^{\times}$ [May-Quinn-Ray-Tornehave]
- If R is E_n then $R \wedge R \to R$ is E_{n-1} [Dunn]
Assume that R is E_{n+1} and $\sigma : MU \to R$ is E_n

Thom map

$$g : \Sigma_+^\infty BU \to R$$

$$MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

Fact:

- Space of E_n ring maps $\Sigma_+^\infty BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^\infty R^\times$ [May-Quinn-Ray-Tornehave]
- If R is E_{n+1} then $R \wedge R \to R$ is E_n [Dunn]
Assume that R is E_{n+1} and $\sigma : MU \to R$ is E_n

Thom map

$$g : \Sigma_+^\infty BU \to R \quad \implies \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

Fact:
- Space of E_n ring maps $\Sigma_+^\infty BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^\infty R^\times$ [May-Quinn-Ray-Tornehave]
- If R is E_{n+1} then $R \wedge R \to R$ is E_n [Dunn]

Observation
If R is E_{n+1} and then we have a natural action of the space of E_n maps $\mathcal{E}_n(BU, \Omega^\infty R^\times)$ on the space of E_n ring maps $\mathcal{E}_n(MU, R)$. If non empty, we get a map $\mathcal{E}_n(BU, \Omega^\infty R^\times) \to \mathcal{E}_n(MU, R)$.
Assume that R is E_{n+1} and $\sigma: MU \to R$ is E_n.

Thom map

$$g: \Sigma^\infty BU \to R \implies MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

Fact:

- Space of E_n ring maps $\Sigma^\infty BU \to R$ isomorphic to space of E_n maps $BU \to \Omega^\infty R^\times$ [May-Quinn-Ray-Tornehave]
- If R is E_{n+1} then $R \wedge R \to R$ is E_n [Dunn]

Observation

If R is E_{n+1} and then we have a natural action of the space of E_n maps $\mathcal{E}_n(BU, \Omega^\infty R^\times)$ on the space of E_n ring maps $\mathcal{E}_n(MU, R)$. If non empty, we get a map $\mathcal{E}_n(BU, \Omega^\infty R^\times) \to \mathcal{E}_n(MU, R)$.
Multiplicative Thom Isomorphism

Assume that R is E_{n+1} and $\sigma : MU \to R$ is E_n

Thom map

$$g : \Sigma_+ \infty BU \to R \quad \implies \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

induces a map $\mathcal{E}_n(BU, \Omega_0 R^\times) \approx \mathcal{E}_n(\Sigma_+ \infty BU, R) \to \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

- Suffices to consider the case when R is connective
- Look at Postnikov tower of R
Assume that R is E_{n+1} and $\sigma: MU \to R$ is E_n.

Thom map

$$g: \Sigma^\infty BU \to R \implies MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

induces a map $\mathcal{E}_n(BU, \Omega^\infty R^\times) \simeq \mathcal{E}_n(\Sigma^\infty BU, R) \to \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

- Suffices to consider the case when R is connective
- Look at Postnikov tower of R
Multiplicative Thom Isomorphism

Assume that R is E_{n+1} and $\sigma : MU \to R$ is E_n.

Thom map

$$g : \Sigma^\infty BU \to R \quad \implies \quad MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

induces a map $\mathcal{E}_n(BU, \Omega^\infty R^\times) \simeq \mathcal{E}_n(\Sigma^\infty BU, R) \to \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

- Suffices to consider the case when R is connective.
- Look at Postnikov tower of R.
Multiplicative Thom Isomorphism

Assume that R is E_{n+1} and $\sigma: MU \to R$ is E_n

Thom map

$$g: \Sigma^\infty BU \to R \implies MU \to MU \wedge BU_+ \xrightarrow{\sigma \wedge g} R \wedge R \to R$$

induces a map $\mathcal{E}_n(BU, \Omega^\infty R^\times) \simeq \mathcal{E}_n(\Sigma^\infty BU, R) \to \mathcal{E}_n(MU, R)$

Theorem

This map is a weak equivalence.

- Suffices to consider the case when R is connective
- Look at Postnikov tower of R
Postnikov Towers of E_n ring spectra

Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Postnikov Towers of E_n ring spectra

Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \rightarrow \cdots \rightarrow R\langle 2 \rangle \rightarrow R\langle 1 \rangle \rightarrow R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Postnikov Towers of E_n ring spectra

Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \rightarrow \cdots \rightarrow R\langle 2 \rangle \rightarrow R\langle 1 \rangle \rightarrow R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.
Postnikov Towers of E_n ring spectra

Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.

Magic Fact (Kriz)

This is a tower of principal fibrations of E_n ring spectra

$$R\langle j+1 \rangle \to HZ$$

$$R\langle j \rangle \to HZ \vee \Sigma^{j+2} H\pi_{j+1} R$$
Postnikov Towers of E_n ring spectra

Let R be a connective E_n ring spectrum and let $Z = \pi_0 R$.

Form Postnikov tower by killing higher homotopy groups

$$R \to \cdots \to R\langle 2 \rangle \to R\langle 1 \rangle \to R\langle 0 \rangle = HZ$$

in the category of E_n ring spectra.

Magic Fact (Kriz)

This is a tower of principal fibrations of E_n ring spectra
Topological Quillen Cohomology

\[
\begin{array}{ccc}
R\langle j + 1 \rangle & \longrightarrow & HZ \\
\downarrow & & \downarrow \\
R\langle j \rangle & \to & HZ \vee \Sigma^{j+2} \pi_{j+1} \mathbb{R}
\end{array}
\]
Topological Quillen Cohomology

\[H^*_\mathcal{E}_n(A; M) := \pi_0\mathcal{E}_n/\mathcal{H}Z(A, \mathcal{H}Z \vee \Sigma^*\mathcal{H}M) \]

Obstruction theory

- Obstruction in \(H^{j+2}(A; \pi_{j+1} R) \) to lifting an \(E_n \) ring map \(A \to R\langle j \rangle \) to an \(E_n \) ring map \(A \to R\langle j + 1 \rangle \)
- The space of lifts is either empty or is a “free orbit” on the grouplike topological monoid

\[\mathcal{E}_n/\mathcal{H}Z(A, \mathcal{H}Z \vee \Sigma^{j+1} H\pi_{j+1} R) \cong \Omega\mathcal{E}_n/\mathcal{H}Z(A, \mathcal{H}Z \vee \Sigma^{j+2} H\pi_{j+1} R) \]

Atiyah-Hirzebruch Spectral Sequence

For \(E_n \) ring spectra \(A, R \) (with mild hypotheses on \(A \)), there is a natural “obstructed” spectral sequence

\[E^2_{p,q} = H^p_{\mathcal{E}_n}(A; \pi_q R) \implies \pi_{q-p}\mathcal{E}_n(A, R) \]
Topological Quillen Cohomology

\[H^*_\mathcal{E}_n(A; M) := \pi_0\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^*HM) \]

Obstruction theory

- Obstruction in \(H^{j+2}(A; \pi_{j+1}R) \) to lifting an \(E_n \) ring map \(A \to R\langle j \rangle \) to an \(E_n \) ring map \(A \to R\langle j + 1 \rangle \)
- The space of lifts is either empty or is a “free orbit” on the grouplike topological monoid

\[\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1}H\pi_{j+1}R) \cong \Omega\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2}H\pi_{j+1}R) \]

Atiyah-Hirzebruch Spectral Sequence

For \(E_n \) ring spectra \(A, R \) (with mild hypotheses on \(A \)), there is a natural “obstructed” spectral sequence

\[E^2_{p,q} = H^p_{\mathcal{E}_n}(A; \pi_q R) \implies \pi_{q-p}\mathcal{E}_n(A, R). \]
Topological Quillen Cohomology

\[H^*_\mathcal{E}_n(A; M) := \pi_0\mathcal{E}_n/H_\mathcal{Z}(A, H_\mathcal{Z} \lor \Sigma^* H_\mathcal{M}) \]

Obstruction theory

- Obstruction in \(H^{j+2}_\mathcal{E}_n(A; \pi_{j+1} R) \) to lifting an \(E_n \) ring map \(A \to R\langle j \rangle \) to an \(E_n \) ring map \(A \to R\langle j + 1 \rangle \)
- The space of lifts is either empty or is a “free orbit” on the grouplike topological monoid

\[\mathcal{E}_n/H_\mathcal{Z}(A, H_\mathcal{Z} \lor \Sigma^{j+1} H\pi_{j+1} R) \cong \Omega\mathcal{E}_n/H_\mathcal{Z}(A, H_\mathcal{Z} \lor \Sigma^{j+2} H\pi_{j+1} R) \]

Atiyah-Hirzebruch Spectral Sequence

For \(E_n \) ring spectra \(A, R \) (with mild hypotheses on \(A \)), there is a natural “obstructed” spectral sequence

\[E^2_{p,q} = H^p_\mathcal{E}_n(A; \pi_q R) \implies \pi_{q-p}\mathcal{E}_n(A, R). \]
Topological Quillen Cohomology

\[H^*_{\mathcal{E}_n}(A; M) := \pi_0 \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* HM) \]

Obstruction theory

- Obstruction in \(H^{j+2}(A; \pi_{j+1} R) \) to lifting an \(E_n \) ring map \(A \to R\langle j \rangle \) to an \(E_n \) ring map \(A \to R\langle j + 1 \rangle \)

- The space of lifts is either empty or is a “free orbit” on the grouplike topological monoid

\[\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1} H\pi_{j+1} R) \cong \Omega \mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2} H\pi_{j+1} R) \]

Atiyah-Hirzebruch Spectral Sequence

For \(E_n \) ring spectra \(A, R \) (with mild hypotheses on \(A \)), there is a natural “obstructed” spectral sequence

\[E^2_{p,q} = H^p_{\mathcal{E}_n}(A; \pi_q R) \implies \pi_{q-p} \mathcal{E}_n(A, R). \]
Topological Quillen Cohomology

$H^*_\mathcal{E}_n(A; M) := \pi_0\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^* H\pi_{j+1} R)$

Obstruction theory

- Obstruction in $H^{i+2}(A; \pi_{j+1} R)$ to lifting an E_n ring map $A \to R\langle j \rangle$ to an E_n ring map $A \to R\langle j + 1 \rangle$
- The space of lifts is either empty or is a “free orbit” on the grouplike topological monoid

$\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+1} H\pi_{j+1} R) \simeq \Omega\mathcal{E}_{n/HZ}(A, HZ \vee \Sigma^{j+2} H\pi_{j+1} R)$

Atiyah-Hirzebruch Spectral Sequence

For E_n ring spectra A, R (with mild hypotheses on A), there is a natural “obstructed” spectral sequence

$E^2_{p,q} = H^p_{\mathcal{E}_n}(A; \pi_q R) \implies \pi_{q-p}\mathcal{E}_n(A, R)$.

M.A. Mandell (IU)
Topological Quillen Cohomology

\[H_{\mathcal{E}_n}^* (A; M) := \pi_0 \mathcal{E}_{n/H\mathbb{Z}}(A, H\mathbb{Z} \vee \Sigma^* H\mathcal{M}) \]

Obstruction theory

- Obstruction in \(H^{j+2}(A; \pi_{j+1} R) \) to lifting an \(E_n \) ring map \(A \to R\langle j \rangle \) to an \(E_n \) ring map \(A \to R\langle j + 1 \rangle \)
- The space of lifts is either empty or is a “free orbit” on the grouplike topological monoid

\[\mathcal{E}_{n/H\mathbb{Z}}(A, H\mathbb{Z} \vee \Sigma^{j+1} H\pi_{j+1} R) \cong \Omega \mathcal{E}_{n/H\mathbb{Z}}(A, H\mathbb{Z} \vee \Sigma^{j+2} H\pi_{j+1} R) \]

Atiyah-Hirzebruch Spectral Sequence

For \(E_n \) ring spectra \(A, R \) (with mild hypotheses on \(A \)), there is a natural “obstructed” spectral sequence

\[E^2_{p,q} = H_{\mathcal{E}_n}^p (A; \pi_q R) \implies \pi_{q-p} \mathcal{E}_n(A, R). \]
Thom isomorphism: $HZ \wedge MU \xrightarrow{\sim} HZ \wedge BU_+$ as E_n HZ-algebras.

For R an E_{n+1} ring spectrum and $\sigma: MU \to R$ an E_n ring map, the Thom map induces an isomorphism on E^2-terms

$$H^p_{E_n}(\Sigma^\infty_+ BU; \pi_q R) \xrightarrow{\sim} H^p_{E_n}(MU; \pi_q R)$$

and an isomorphism

$$\pi_* E_n(\Sigma^\infty_+ BU, R) \xrightarrow{\sim} \pi_* E_n(MU, R)$$

Nothing special about BU/MU here; works for any E_n Thom spectrum.
Multiplicative Thom Isomorphism

Thom isomorphism: \(HZ \wedge MU \xrightarrow{\sim} HZ \wedge BU_+ \) as \(E_n \) \(HZ \)-algebras.

\[
HZ \wedge MU \rightarrow HZ \wedge MU \wedge BU_+ \rightarrow HZ \wedge HZ \wedge BU_+ \rightarrow HZ \wedge BU_+ \\
\Rightarrow H^*_E(\Sigma^\infty BU; -) \xrightarrow{\sim} H^*_E(MU; -)
\]

Consequence

For \(R \) an \(E_{n+1} \) ring spectrum and \(\sigma: MU \rightarrow R \) an \(E_n \) ring map, the Thom map induces an isomorphism on \(E^2 \)-terms

\[
\xymatrix{
H^p_E(\Sigma^\infty BU; \pi_q R)
\ar@{^{(}->}[r]^-{BU}
\ar@{<->}[d]^-{\sim}
&
H^p_E(MU; \pi_q R)
\ar@{<->}[d]^-{\sim}
}
\]

and an isomorphism

\[
\pi_* E_n(\Sigma^\infty BU, R) \xrightarrow{\sim} \pi_* E_n(MU, R)
\]

Nothing special about \(BU/MU \) here; works for any \(E_n \) Thom spectrum.
Multiplicative Thom Isomorphism

Thom isomorphism: $HZ \wedge MU \xrightarrow{\sim} HZ \wedge BU_+ \text{ as } E_n \text{ } HZ\text{-algebras.}$

$$HZ \wedge MU \rightarrow HZ \wedge MU \wedge BU_+ \rightarrow HZ \wedge HZ \wedge BU_+ \rightarrow HZ \wedge BU_+$$

$$\implies H_{E_n}^* (\Sigma\infty BU; -) \xrightarrow{\sim} H_{E_n}^* (MU; -)$$

Consequence

For R an E_{n+1} ring spectrum and $\sigma: MU \rightarrow R$ an E_n ring map, the Thom map induces an isomorphism on E^2-terms

$$H_{E_n}^p (\Sigma\infty; \pi_q R) \xrightarrow{\sim} H_{E_n}^p (MU; \pi_q R)$$

and an isomorphism

$$\pi_* E_n (\Sigma\infty BU, R) \xrightarrow{\sim} \pi_* E_n (MU, R)$$

Nothing special about BU/MU here; works for any E_n Thom spectrum.
Multiplicative Thom Isomorphism

Thom isomorphism: \(HZ \wedge MU \xrightarrow{\sim} HZ \wedge BU_+ \) as \(E_n \) \(HZ \)-algebras.

\[
HZ \wedge MU \to HZ \wedge MU \wedge BU_+ \to HZ \wedge HZ \wedge BU_+ \to HZ \wedge BU_+
\]

\[
\implies H^*_E (\Sigma^\infty_+ BU; -) \xrightarrow{\sim} H^*_E (MU; -)
\]

Consequence

For \(R \) an \(E_{n+1} \) ring spectrum and \(\sigma: MU \to R \) an \(E_n \) ring map, the Thom map induces an isomorphism on \(E^2 \)-terms

\[
H^p_E (\Sigma^\infty_+ BU; \pi_q R) \xrightarrow{\sim} H^p_E (MU; \pi_q R)
\]

and an isomorphism

\[
\pi_* E_n (\Sigma^\infty_+ BU, R) \xrightarrow{\sim} \pi_* E_n (MU, R)
\]

Nothing special about \(BU/MU \) here; works for any \(E_n \) Thom spectrum.
\[\mathcal{E}_n(\Sigma^\infty BU, R) \simeq \mathcal{E}_n(BU, \Omega^\infty R^\times) \]
\[= \mathcal{E}_n(BU, (\Omega^\infty R^\times)_1) \]
\[\simeq \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^n BU; \bar{R}_q) = H^p(B^n BU; \pi_{q+n}(B^n(\Omega^\infty R)_1)) \]
\[\implies \pi_{q+n-p} \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

For \(n = 2 \),

\[H^*(B^2 BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and

\[H^*(BSU) \to H^*(\Sigma^2 BU(1)) \]

is surjective.
\[E_n(\sum_+ \Sigma \infty BU, R) \simeq E_n(BU, \Omega \infty R^\times) \]
\[= E_n(BU, (\Omega \infty R^\times)_1) \]
\[\simeq U(B^n BU, B^n(\Omega \infty R)_1) \]

Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^n BU; \bar{R}_q) = H^p(B^n BU; \pi_{q+n}(B^n(\Omega \infty R)_1)) \]
\[\implies \pi_{q+n-p} U(B^n BU, B^n(\Omega \infty R)_1) \]

For \(n = 2 \),
\[H^*(B^2 BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and
\[H^*(BSU) \to H^*(\Sigma^2 BU(1)) \]
is surjective.
\[E_n(\sum_\infty BU, R) \simeq E_n(BU, \Omega^\infty R^\times) \]
\[= E_n(BU, (\Omega^\infty R^\times)_1) \]
\[\simeq \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^n BU; \bar{R}_q) = H^p(B^n BU; \pi_{q+n}(B^n(\Omega^\infty R)_1)) \]
\[\implies \pi_{q+n-p} \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

For \(n = 2 \),

\[H^\ast(B^2 BU) = H^\ast(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and

\[H^\ast(BSU) \to H^\ast(\Sigma^2 BU(1)) \]

is surjective.
\[E_n(\Sigma^\infty BU, R) \simeq E_n(BU, \Omega^\infty \mathbb{R}^\times) \]
\[= E_n(BU, (\Omega^\infty \mathbb{R}^\times)_1) \]
\[\simeq U(B^nBU, B^n(\Omega^\infty \mathbb{R})_1) \]

Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^nBU; \bar{R}_q) = H^p(B^nBU; \pi_{q+n}(B^n(\Omega^\infty \mathbb{R})_1)) \]
\[\implies \pi_{q+n-p}U(B^nBU, B^n(\Omega^\infty \mathbb{R})_1) \]

For \(n = 2 \),

\[H^*(B^2BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and

\[H^*(BSU) \to H^*(\Sigma^2BU(1)) \]

is surjective.
Computation

\[\mathcal{E}_n(\Sigma^\infty_+ BU, R) \simeq \mathcal{E}_n(BU, \Omega^\infty R^\times) \]
\[= \mathcal{E}_n(BU, (\Omega^\infty R^\times)_1) \]
\[\simeq \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^n BU; \bar{R}_q) = H^p(B^n BU; \pi_{q+n}(B^n(\Omega^\infty R)_1)) \]
\[\implies \pi_{q+n-p} \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

For \(n = 2 \),

\[H^*(B^2 BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and

\[H^*(BSU) \rightarrow H^*(\Sigma^2 BU(1)) \]

is surjective.
Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^n BU; \bar{R}_q) = H^p(B^n BU; \pi_{q+n}(B^n(\Omega^\infty R)_1)) \]

\[\implies \pi_{q+n-p} \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

For \(n = 2 \),

\[H^*(B^2 BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and

\[H^*(BSU) \to H^*(\Sigma^2 BU(1)) \]

is surjective.
Computation

\[\mathcal{E}_n(\Sigma^\infty BU, R) \simeq \mathcal{E}_n(BU, \Omega^\infty R^\times) \]
\[= \mathcal{E}_n(BU, (\Omega^\infty R^\times)_1) \]
\[\simeq \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

Compute using “Atiyah-Hirzebruch spectral sequence”

\[H^p(B^n BU; \bar{R}_q) = H^p(B^n BU; \pi_{q+n}(B^n(\Omega^\infty R)_1)) \]
\[\implies \pi_{q+n-p} \mathcal{U}(B^n BU, B^n(\Omega^\infty R)_1) \]

For \(n = 2 \),

\[H^*(B^2 BU) = H^*(BSU) = \mathbb{Z}[c_2, c_3, \ldots] \]

and

\[H^*(BSU) \to H^*(\Sigma^2 BU(1)) \]

is surjective.
Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^\infty R^\times)$ and $\pi_{-k} \mathcal{E}_2(BU, \Omega^\infty R^\times) \to R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

What about for R just E_2?
\[
H^*_\mathcal{E}_2(MU; \pi) \cong H^*_\mathcal{E}_2(\Sigma^\infty_+ BU; \pi) \cong H^*+2(B^n BU; \pi) = H^*+2(BSU; \pi) \to H^*(BU(1); \pi)
\]

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^\infty R^\times)$ and $\pi_{-*} \mathcal{E}_2(BU, \Omega^\infty R^\times) \to R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

What about for R just E_2?

$$H^*_{\mathcal{E}_2}(MU; \pi) \cong H^*_{\mathcal{E}_2}(\Sigma^\infty_+ BU; \pi) \cong H^{*+2}(B^n BU; \pi)$$

$$= H^{*+2}(BSU; \pi) \to H^*(BU(1); \pi)$$

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^\infty R^\times)$ and $\pi_{-*}\mathcal{E}_2(BU, \Omega^\infty R^\times) \to R^*(BU(1))$ is surjective. Thus, every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

What about for R just E_2?

$$H^*_{\mathcal{E}_2}(MU; \pi) \cong H^*_{\mathcal{E}_2}(\Sigma^\infty BU; \pi) \cong H^{*+2}(B^n BU; \pi)$$

$$= H^{*+2}(BSU; \pi) \to H^*(BU(1); \pi)$$

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^\infty R^\times)$ and $\pi_{-\ast} \mathcal{E}_2(BU, \Omega^\infty R^\times) \to R^\ast(BU(1))$ is surjective. Thus, every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

What about for R just E_2?

$H^\ast_{\mathcal{E}_2}(MU; \pi) \simeq H^\ast_{\mathcal{E}_2}(\Sigma^\infty BU; \pi) \simeq H^\ast+2(B^2BU; \pi)$

$= H^\ast+2(\text{BSU}; \pi) \to H^\ast(BU(1); \pi)$

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.
Main Result

Theorem

If \(R \) is an even \(E_3 \) ring spectrum, then \(\mathcal{E}_2(MU, R) \cong \mathcal{E}_2(BU, \Omega^\infty R^\times) \) and \(\pi_\ast \mathcal{E}_2(BU, \Omega^\infty R^\times) \to R^\ast(BU(1)) \) is surjective. Thus, every map of ring spectra \(MU \to R \) lifts to a map of \(E_2 \) ring spectra.

What about for \(R \) just \(E_2 \)?

\[
H^\ast_{\mathcal{E}_2}(MU; \pi) \cong H^\ast_{\mathcal{E}_2}(\Sigma^\infty BU; \pi) \cong H^{\ast+2}(B^n BU; \pi)
\]

\[
= H^{\ast+2}(BSU; \pi) \to H^\ast(BU(1); \pi)
\]

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem

If \(R \) is an even \(E_2 \) ring spectrum then every map of ring spectra \(MU \to R \) lifts to a map of \(E_2 \) ring spectra.
Main Result

Theorem

If R is an even E_3 ring spectrum, then $\mathcal{E}_2(MU, R) \simeq \mathcal{E}_2(BU, \Omega^\infty R^\times)$ and $\pi_\ast \mathcal{E}_2(BU, \Omega^\infty R^\times) \to R^\ast(BU(1))$ is surjective. Thus, every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.

What about for R just E_2?

$H^\ast_{\mathcal{E}_2}(MU; \pi) \cong H^\ast_{\mathcal{E}_2}(\Sigma^\infty BU; \pi) \cong H^{\ast+2}(B^n BU; \pi)$

$= H^{\ast+2}(BSU; \pi) \to H^\ast(BU(1); \pi)$

Careful argument with “Atiyah-Hirzebruch spectral sequence”

Theorem

If R is an even E_2 ring spectrum then every map of ring spectra $MU \to R$ lifts to a map of E_2 ring spectra.