Localization Sequences in THH

Michael A. Mandell

Indiana University

Topology Seminar
January 24, 2012
Overview

Localization Sequences in THH

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg

Main Goal: Prove Ausoni–Rognes/Hesselholt conjecture about the localization sequences for $THH(ku)$ (and $TC(ku)$)
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg

Main Goal: Prove Ausoni–Rognes/Hesselholt conjecture about the localization sequences for $THH(ku)$ (and $TC(ku)$)

2nd Goal: Make sense of the THH of Waldhausen categories
Overview

Localization Sequences in THH and TC II

- Joint work with Andrew Blumberg

Main Goal: Prove Ausoni–Rognes/Hesselholt conjecture about the localization sequences for $THH(ku)$ (and $TC(ku)$)

2nd Goal: Make sense of the THH of Waldhausen categories

3rd Goal: Understand the relationship to already known localization sequences in THH and TC
Quillen Localization Sequence

Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \rightarrow K(R) \rightarrow K(F).$$

$k = R/\pi$

$F = R[\pi^{-1}]$

DVR = local ring

PID

$R = \mathbb{Z}_p$

$k = \mathbb{Z}/p$

$F = \mathbb{Q}_p$

PID will survive irreducible (up to unit)

π
Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \to K(R) \to K(F).$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \to K(R) \to K(F).$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Quillen Localization Sequence

Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \to K(R) \to K(F).$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Quillen Localization Sequence

Let R be a discrete valuation ring, with residue field k and field of fractions F. Then there is a cofibration sequence of K-theory spectra

$$K(k) \rightarrow K(R) \rightarrow K(F).$$

This uses the K-theory of abelian categories.

Secretly $K(k)$ is really the K-theory of the category of finitely generated torsion R-modules.

(Devissage theorem.)
Hesselholt–Madsen Theorem

Let R be a complete discrete valuation ring, with residue field k perfect of characteristic $p > 2$ and field of fractions F of characteristic zero, containing the p^n-th roots of unity. Then:

- $K(F; \mathbb{Z}/p^n)$ can be computed in terms of the De Rham–Witt complex.
- F satisfies the Lichtenbaum-Quillen conjecture. (proved by Voevodsky)

$$R = \varprojlim_n R/\pi^n$$
1. McCarthy Theorem: If $A \to B$ is nilpotent with surjective kernel

\[
\begin{array}{c}
K(A)_p \to K(B)_p \\
\downarrow \downarrow \\
TC(A) \to TC(B)
\end{array}
\]

is homotopy cartesian.

2. Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then $K(k)_p \cong H\mathbb{Z}_p$.

3. Suslin K-theory continuity results imply $K(R)_p \cong \text{holim} \ K(R/\pi^n)_p$.

Hesselholt–Madsen then show:

\[
\begin{align*}
K(k)_p & \cong TC(k)[0, \infty) \\
K(R)_p & \cong TC(R)[0, \infty)
\end{align*}
\]
1 McCarthy Theorem: If $A \to B$ is nilpotent with surjective kernel

$$K(A)_{\hat{\cdot}} \to K(B)_{\hat{\cdot}} \to TC(A) \to TC(B)$$

is homotopy cartesian.

2 Quillen–Krasner Theorem: If k is a perfect field of characteristic ρ, then $K(k)_{\hat{\rho}} \simeq H\mathbb{Z}_{\hat{\rho}}$.

3 Suslin K-theory continuity results imply $K(R)_{\hat{\rho}} \simeq \text{holim} K(R/\pi^n)_{\hat{\rho}}$.

Hesselholt–Madsen then show:

$$K(k)_{\hat{\rho}} \simeq TC(k)[0, \infty) \quad K(R)_{\hat{\rho}} \simeq TC(R)[0, \infty)$$
1. McCarthy Theorem: If $A \to B$ is nilpotent with surjective kernel

\[K(A)_{\hat{\rho}} \to K(B)_{\hat{\rho}} \to TC(A) \to TC(B) \]

is homotopy cartesian.

2. Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then

\[K(k)_{\hat{\rho}} \cong H\mathbb{Z}_{\hat{\rho}}. \]

\[b_2 \cong R/(\pi) \leftarrow R/(\pi^n) \]

3. Suslin K-theory continuity results imply $K(R)_{\hat{\rho}} \cong \text{holim} \ K(R/\pi^n)_{\hat{\rho}}$.

Hesselholt–Madsen then show:

\[K(k)_{\hat{\rho}} \cong TC(k)[0, \infty) \]

\[K(R)_{\hat{\rho}} \cong TC(R)[0, \infty) \]
1 McCarthy Theorem: If $A \to B$ is nilpotent with surjective kernel

\[
K(A)_{\hat{\cdot}} \to K(B)_{\hat{\cdot}}
\]

\[
\downarrow \quad \downarrow
\]

\[
TC(A) \to TC(B)
\]

is homotopy cartesian.

2 Quillen–Krasner Theorem: If k is a perfect field of characteristic p, then $K(k)_{\hat{\cdot}} \simeq H\mathbb{Z}_{\hat{\cdot}}$. $R = \varprojlim R/\pi^n$

3 Suslin K-theory continuity results imply $K(R)_{\hat{\cdot}} \simeq \text{holim} K(R/\pi^n)_{\hat{\cdot}}$.

Hesselholt–Madsen then show:

\[
K(k)_{\hat{\cdot}} \simeq TC(k)[0, \infty)
\]

\[
K(R)_{\hat{\cdot}} \simeq TC(R)[0, \infty)
\]
1. McCarthy Theorem: If \(A \rightarrow B \) is nilpotent with surjective kernel

\[
\begin{align*}
K(A)_p & \rightarrow K(B)_p \\
\downarrow & \\
TC(A) & \rightarrow TC(B)
\end{align*}
\]
is homotopy cartesian.

2. Quillen–Krasner Theorem: If \(k \) is a perfect field of characteristic \(p \), then

\[
K(k)_p \simeq H\mathbb{Z}_p.
\]

3. Suslin \(K \)-theory continuity results imply

\[
K(R)_p \simeq \text{holim} K(R/\pi_1^n)_p.
\]

Hesselholt–Madsen then show:

\[
\begin{align*}
K(k)_p & \simeq TC(k)[0, \infty) \\
K(R)_p & \simeq TC(R)[0, \infty)
\end{align*}
\]
Key step to enable computation

Identify the cofiber of $TC(k) \to TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \to THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

\[
R = \mathbb{Z}_p^\wedge, \quad k = \mathbb{Z}/p, \quad F = \mathbb{Q}_p^\wedge
\]

- $THH(\mathbb{Z}/p) = \vee \Sigma^{2n} H\mathbb{Z}/p$
- $THH(\mathbb{Z}_p^\wedge) = \vee \Sigma^{2n-1} H\mathbb{Z}_p^\wedge/n$
- $THH(\mathbb{Q}_p^\wedge) = H\mathbb{Q}_p^\wedge$

Key step but not “big idea”. Big idea is the computation itself and interpretation in terms of De Rham–Witt.
Key step to enable computation

Identify the cofiber of $TC(k) \rightarrow TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \rightarrow THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

$R = \mathbb{Z}_p^\wedge$, $k = \mathbb{Z}/p$, $F = \mathbb{Q}_p^\wedge$

- $THH(\mathbb{Z}/p) = \bigvee \Sigma^{2n} H\mathbb{Z}/p$
- $THH(\mathbb{Z}_p^\wedge) = \bigvee \Sigma^{2n-1} H\mathbb{Z}_p^\wedge/n$
- $THH(\mathbb{Q}_p^\wedge) = H\mathbb{Q}_p^\wedge$

Key step but not “big idea”. Big idea is the computation itself and interpretation in terms of De Rham–Witt.
Key step to enable computation

Identify the cofiber of $TC(k) \to TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \to THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

\[
\begin{align*}
R &= \mathbb{Z}_p^\wedge, & k &= \mathbb{Z}/p, & F &= \mathbb{Q}_p^\wedge \\
& & & & \\
& & & & THH(\mathbb{Z}/p) &= \bigvee \Sigma^{2n} H\mathbb{Z}/p \\
& & & & THH(\mathbb{Z}_p^\wedge) &= \bigvee \Sigma^{2n-1} H\mathbb{Z}_p^\wedge/n \\
& & & & THH(\mathbb{Q}_p^\wedge) &= H\mathbb{Q}_p^\wedge
\end{align*}
\]

Key step but not “big idea”. Big idea is the computation itself and interpretation in terms of De Rham–Witt.
Key step to enable computation

Identify the cofiber of $TC(k) \to TC(R)$ in intrinsic terms.

Identify the cofiber of $THH(k) \to THH(R)$ in intrinsic terms.

Note: Cofiber is not $THH(F)$

Example

$R = \mathbb{Z}_p^\wedge$, $k = \mathbb{Z}/p$, $F = \mathbb{Q}_p^\wedge$

- $THH(\mathbb{Z}/p) = \bigvee \Sigma^{2n} H\mathbb{Z}/p$
- $THH(\mathbb{Z}_p^\wedge) = \bigvee \Sigma^{2n-1} H\mathbb{Z}_p^\wedge / n$
- $THH(\mathbb{Q}_p^\wedge) = H\mathbb{Q}_p^\wedge$

Key step but not “big idea”. Big idea is the computation itself and interpretation in terms of De Rham–Witt.
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$\text{THH}(k) \to \text{THH}(R) \to \text{THH}(R \mid F)$$

Recall

$$\text{THH}(k) = \text{THH}(\mathcal{T}) = N^c_{\text{Bök}}(S \cdot \mathcal{T}) \simeq N^c_{\text{Bök}}(S \cdot N^i \mathcal{T})$$

$$\text{THH}(R) = \text{THH}(\mathcal{M}) = N^c_{\text{Bök}}(S \cdot \mathcal{M}) \simeq N^c_{\text{Bök}}(S \cdot N^i \mathcal{M})$$

$\mathcal{T} =$ Torsion f.g. R-modules

$\mathcal{M} =$ All f.g. R-modules
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F)$$

Recall

$$THH(k) = THH(\mathcal{T}) = N^{\text{cyc}}_{\text{Bök}}(S \cdot \mathcal{T}) \simeq N^{\text{cyc}}_{\text{Bök}}(S \cdot N^i \mathcal{T})$$

$$THH(R) = THH(\mathcal{M}) = N^{\text{cyc}}_{\text{Bök}}(S \cdot \mathcal{M}) \simeq N^{\text{cyc}}_{\text{Bök}}(S \cdot N^i \mathcal{M})$$

\mathcal{T} = Torsion f.g. R-modules

\mathcal{M} = All f.g. R-modules
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \to THH(R) \to THH(R \mid F)$$

Recall

$$THH(k) \cong THH(\mathcal{T}) := N^{\text{cyc}}_{\text{Bök}}(S \bullet \mathcal{T}) \cong N^{\text{cyc}}_{\text{Bök}}(S \bullet N^{i} \mathcal{T})$$

$$THH(R) \cong THH(\mathcal{M}) := N^{\text{cyc}}_{\text{Bök}}(S \bullet \mathcal{M}) \cong N^{\text{cyc}}_{\text{Bök}}(S \bullet N^{i} \mathcal{M})$$

$\mathcal{T} = \text{Torsion f.g. } R\text{-modules}$

$\mathcal{M} = \text{All f.g. } R\text{-modules}$
Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

\[THH(k) \to THH(R) \to THH(R \mid F) \]

Recall

\[THH(k) = THH(\mathcal{T}) = N_{\text{Bök}}^{\text{cyc}}(S \cdot \mathcal{T}) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^i \mathcal{T}) \]
\[THH(R) = THH(\mathcal{M}) = N_{\text{Bök}}^{\text{cyc}}(S \cdot \mathcal{M}) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^i \mathcal{M}) \cong N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \mathcal{C}) \]

$\mathcal{T} =$ Torsion f.g. R-modules
$\mathcal{M} =$ All f.g. R-modules
$\mathcal{C} =$ Complexes of f.g. R-modules
$w =$ weak equivalences $=$ quasi-isomorphisms
Idea

Use Waldhausen’s localization sequence in K-theory to construct a localization sequence in THH.

$$THH(k) \to THH(R) \to THH(R | F)$$

Recall

$$THH(k) = THH(\mathcal{T}) = N_{\text{Bök}}^{\text{cyc}}(S \cdot \mathcal{T}) \simeq N_{\text{Bök}}^{\text{cyc}}(S \cdot N_{i}^{\text{t}} \mathcal{T}) \simeq N_{\text{Bök}}^{\text{cyc}}(S \cdot N_{w}^{\text{C}})$$

$$THH(R) = THH(\mathcal{M}) = N_{\text{Bök}}^{\text{cyc}}(S \cdot \mathcal{M}) \simeq N_{\text{Bök}}^{\text{cyc}}(S \cdot N_{i}^{\text{q}} \mathcal{M}) \simeq N_{\text{Bök}}^{\text{cyc}}(S \cdot N_{w}^{\text{C}})$$

$\mathcal{T} = \text{Torsion f.g. } R\text{-modules}$

$\mathcal{M} = \text{All f.g. } R\text{-modules}$

$\mathcal{C} = \text{Complexes of f.g. } R\text{-modules}$

$w = \text{weak equivalences = quasi-isomorphisms}$

$q = \text{mod torsion equivalences}$
Construction

\[\text{THH}(k) \rightarrow \text{THH}(R) \rightarrow \text{THH}(R \mid F) \]

\[N_{\text{Bök}}^{\text{cyc}}(\mathcal{S} \cdot N^w C^q) \]

Definition

\[\text{THH}(R \mid F) = N_{\text{Bök}}^{\text{cyc}}(\mathcal{S} \cdot N^q C) \]
Construction

\[\text{Definition} \]

\[THH(R \mid F) = N^\text{cyc}_{\text{Bök}}(S \cdot N^q C) \]
Construction

\[\text{THH}(k) \xrightarrow{\sim} \text{THH}(R) \xrightarrow{\sim} \text{THH}(R \mid F) \]

\[\text{N}_{\text{cyc}}^{\text{Bök}}(S \cdot N^w C^q) \xrightarrow{\sim} \text{N}_{\text{cyc}}^{\text{Bök}}(S \cdot N^w C) \xrightarrow{\sim} \text{N}_{\text{cyc}}^{\text{Bök}}(S \cdot N^q C) \]

Theorem (Waldhausen Square)

The square

\[(S \cdot N^w C^q) \xrightarrow{} (S \cdot N^q C^q) \]

\[(S \cdot N^w C) \xrightarrow{} (S \cdot N^q C) \]
Construction

\[\text{Theorem (Waldhausen/McCarthy)} \]

The square

\[
\begin{align*}
N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w_C \cdot C^q) &\rightarrow N_{\text{Bök}}^{\text{cyc}}(S \cdot N^q_C \cdot C^q) \\
&\sim \not\simeq \\
N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w_C) &\rightarrow N_{\text{Bök}}^{\text{cyc}}(S \cdot N^q_C)
\end{align*}
\]

is homotopy cartesian
Ausoni–Rognes Computations

Ausoni and Ausoni–Rognes compute

- $K(ku)$ and $K(\ell_p^\wedge)$
- $K(KU)$ and $K(L_p^\wedge)$

mod p and v_1 assuming:

- Localization sequence in K-theory

\[
K(H\mathbb{Z}) \to K(ku) \to K(KU)
\]
\[
K(H\mathbb{Z}_p^\wedge) \to K(\ell_p^\wedge) \to K(L_p^\wedge)
\]

- Localization sequence in THH

\[
THH(H\mathbb{Z}) \to THH(ku) \to THH(KU)
\]
\[
THH(H\mathbb{Z}_p^\wedge) \to THH(\ell_p^\wedge) \to THH(L_p^\wedge)
\]
Ausoni–Rognes Computations

Ausoni and Ausoni–Rognes compute

- $K(ku)$ and $K(\ell_p^\wedge)$
- $K(KU)$ and $K(L_p^\wedge)$

mod p and v_1 assuming:

- Localization sequence in K-theory

$$K(H\mathbb{Z}) \to K(ku) \to K(KU)$$
$$K(H\mathbb{Z}_p^\wedge) \to K(\ell_p^\wedge) \to K(L_p^\wedge)$$

- Localization sequence in THH

$$THH(H\mathbb{Z}) \to THH(ku) \to THH(KU)$$
$$THH(H\mathbb{Z}_p^\wedge) \to THH(\ell_p^\wedge) \to THH(L_p^\wedge)$$
Ausoni–Rognes Computations

Ausoni and Ausoni–Rognes compute

- $K(ku)$ and $K(\ell_p^\wedge)$
- $K(KU)$ and $K(L_p^\wedge)$

mod p and v_1 assuming:

- Localization sequence in K-theory

$$K(H\mathbb{Z}) \to K(ku) \to K(KU)$$
$$K(H\mathbb{Z}_p^\wedge) \to K(\ell_p^\wedge) \to K(L_p^\wedge)$$

- Localization sequence in THH

$$THH(H\mathbb{Z}) \to THH(ku) \to THH(KU)$$
$$THH(H\mathbb{Z}_p^\wedge) \to THH(\ell_p^\wedge) \to THH(L_p^\wedge)$$
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

\[
\begin{array}{ccc}
\text{Ob}(S \cdot N^w C^q) & \rightarrow & \text{Ob}(S \cdot N^q C^q) \\
\downarrow & & \downarrow \\
\text{Ob}(S \cdot N^w C) & \rightarrow & \text{Ob}(S \cdot N^q C)
\end{array}
\]

is homotopy cartesian

But now:

$C = \text{finite cell } ku\text{-modules}$

$w = \text{weak equivalences}$

$q = \text{maps that become weak equivalences after inverting Bott element}$

Devissage theorem identifying $\text{Ob}(S \cdot N^w C^q)$ as $K(H\mathbb{Z})$
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

$$
\begin{align*}
\text{Ob}(S \cdot N^w C^q) & \to \text{Ob}(S \cdot N^q C^q) \\
\downarrow & \downarrow \\
\text{Ob}(S \cdot N^w C) & \to \text{Ob}(S \cdot N^q C)
\end{align*}
$$

is homotopy cartesian

But now:

- $C =$ finite cell ku-modules
- $w =$ weak equivalences
- $q =$ maps that become weak equivalences after inverting Bott element

Devissage theorem identifying $\text{Ob}(S \cdot N^w C^q)$ as $K(H\mathbb{Z})$
The localization sequence for \(K(KU) \)

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

\[
\begin{array}{c}
\text{Ob}(S \cdot N^w C^q) \\
\downarrow \\
\text{Ob}(S \cdot N^w C)
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Ob}(S \cdot N^q C^q) \\
\downarrow \\
\text{Ob}(S \cdot N^q C)
\end{array}
\]

is homotopy cartesian

But now:
\(\mathcal{C} = \text{finite cell } ku\text{-modules} \)
\(w = \text{weak equivalences} \)
\(q = \text{maps that become weak equivalences after inverting Bott element} \)

Devissage theorem identifying \(\text{Ob}(S \cdot N^w C^q) \) as \(K(H\mathbb{Z}) \)
The localization sequence for $K(KU)$

Use Waldhausen’s square again:

Theorem (Waldhausen)

The square

\[
\begin{array}{ccc}
\text{Ob}(S \cdot N^w C^q) & \rightarrow & \text{Ob}(S \cdot N^q C^q) \\
\downarrow & & \downarrow \\
\text{Ob}(S \cdot N^w C) & \rightarrow & \text{Ob}(S \cdot N^q C)
\end{array}
\]

is homotopy cartesian

But now:
- $\mathcal{C} = \text{finite cell } ku\text{-modules}$
- $w = \text{weak equivalences}$
- $q = \text{maps that become weak equivalences after inverting Bott element}$

Devissage theorem identifying $\text{Ob}(S \cdot N^w C^q)$ as $K(H\mathbb{Z})$
Categories $N^w_m C$ not exact categories, but are *spectral categories*

Use natural mapping spectra in C.

Get mapping spectra for diagram categories

\[N^w_m C, \quad S_n N^w_m C, \quad S_n N^w_m C^q, \quad \text{etc.} \]

Then apply $N^\text{cyc} Bök$ to square

\[
\begin{align*}
S \cdot N^w C^q &\to S \cdot N^q C^q \\
\downarrow &\downarrow \\
S \cdot N^w C &\to S \cdot N^q C
\end{align*}
\]
Categories N_m^wC not exact categories, but are *spectral categories*

Use natural mapping spectra in C.

Get mapping spectra for diagram categories

\[N_m^wC, \quad S_nN_m^wC, \quad S_nN_m^wC^q, \quad \text{etc.} \]

Then apply $N_{\text{Bök}}^{\text{cyc}}$ to square

\[
\begin{align*}
S \cdot N_m^wC^q & \rightarrow S \cdot N_q^wC^q \\
\downarrow & \\
S \cdot N_m^wC & \rightarrow S \cdot N_q^wC
\end{align*}
\]
Categories $N^w_m \mathcal{C}$ not exact categories, but are *spectral categories*

Use natural mapping spectra in \mathcal{C}.

Get mapping spectra for diagram categories

$$N^w_m \mathcal{C}, \quad S_n N^w_m \mathcal{C}, \quad S_n N^w_m \mathcal{C}^q, \quad \text{etc.}$$

Then apply $N^{cyc}_{\text{Bök}}$ to square

$$S_\bullet N^\bullet w \mathcal{C}^q \rightarrow S_\bullet N^\bullet q \mathcal{C}^q \quad \downarrow \quad \downarrow$$

$$S_\bullet N^\bullet w \mathcal{C} \rightarrow S_\bullet N^\bullet q \mathcal{C}$$
First localization sequence for \textit{THH}

Categories N^w_mC not exact categories, but are \textit{spectral categories}

Use natural mapping spectra in \mathcal{C}.

Get mapping spectra for diagram categories

$$N^w_mC, \quad S_nN^w_mC, \quad S_nN^w_C^q, \quad \text{etc.}$$

Then apply $N^{cyc}_{\text{B"ok}}$ to square

$$S\cdot N^w_C^q \rightarrow S\cdot N^q_C^q \downarrow \downarrow$$

$$S\cdot N^w_C \rightarrow S\cdot N^q_C$$
First localization sequence for \(THH\)

Categories \(N'_mC\) not exact categories, but are \emph{spectral categories}

Use natural mapping spectra in \(C\).

Get mapping spectra for diagram categories

\[
N'_mC, \quad S_nN'_mC, \quad S_nN'_mC^q, \quad \text{etc.}
\]

Then apply \(N^\text{cyc}_{Bök}\) to square

\[
\begin{array}{ccc}
S\cdot N'_mC^q & \rightarrow & S\cdot N^qC^q \\
\downarrow & & \downarrow \\
S\cdot N'_mC & \rightarrow & S\cdot N^qC
\end{array}
\]
First localization sequence for THH

Categories $N_m^w C$ not exact categories, but are *spectral categories*

Use natural mapping spectra in C.

Get mapping spectra for diagram categories

$$N_m^w C, \quad S_n N_m^w C, \quad S_n N_m^w C^q, \quad \text{etc.}$$

Then apply $N_{Bök}^{cyc}$ to square

\[
\begin{align*}
S \cdot N_m^w C^q &\rightarrow S \cdot N_q^q C^q \\
\downarrow &\downarrow \\
S \cdot N_m^w C &\rightarrow S \cdot N_q^q C
\end{align*}
\]
Categories N^w_mC not exact categories, but are *spectral categories*

Use natural mapping spectra in C.

Get mapping spectra for diagram categories

\[N^w_mC, \quad S_nN^w_mC, \quad S_nN^w_mC^q, \quad \text{etc.} \]

Then apply $N^{cyc}_{\text{B"ok}}$ to square

\[
\begin{array}{ccc}
\bullet & N^w_mC^q & \rightarrow & S \cdot N^qC^q \\
\downarrow & & & \downarrow \\
\bullet & S \cdot N^wC & \rightarrow & \bullet \cdot N^qC
\end{array}
\]
First localization sequence for \(THH \) II

Get homotopy (co)cartesian square

\[
\begin{array}{ccc}
N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C^q) & \rightarrow & N_{\text{Bök}}^{\text{cyc}}(S \cdot N^q C^q) \\
\downarrow & & \downarrow \\
N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C) & \rightarrow & N_{\text{Bök}}^{\text{cyc}}(S \cdot N^q C)
\end{array}
\]

and cofiber sequence

\[
THH(N^w C^q) \rightarrow THH(ku) \rightarrow THH(N^q C)
\]

But \(THH(N^q C) \simeq THH(KU) \)
and \(THH(N^q C^q) \not\simeq THH(H\mathbb{Z}) \)
First localization sequence for THH II

Get homotopy (co)cartesian square

\[
\begin{array}{c}
\mathcal{N}_{Bök}^{\text{cyc}}(S \cdot N^w C^q) \to \mathcal{N}_{Bök}^{\text{cyc}}(S \cdot N^q C^q) \\
\downarrow \quad \downarrow \\
\mathcal{N}_{Bök}^{\text{cyc}}(S \cdot N^w C) \to \mathcal{N}_{Bök}^{\text{cyc}}(S \cdot N^q C)
\end{array}
\]

and cofiber sequence

\[
THH(N^w C^q) \to THH(ku) \to THH(N^q C)
\]

But $THH(N^q C) \simeq THH(KU)$

and $THH(N^q C^q) \nRightarrow THH(H\mathbb{Z})$
First localization sequence for THH II

Get homotopy (co)cartesian square

\[
\begin{align*}
N_{\text{cyc}}^{\text{cyc}}(S \cdot N_w^w C^q) & \to N_{\text{cyc}}^{\text{cyc}}(S \cdot N_q^w C^q) \\
\downarrow & \downarrow \\
N_{\text{cyc}}^{\text{cyc}}(S \cdot N_w^w C) & \to N_{\text{cyc}}^{\text{cyc}}(S \cdot N_q^w C)
\end{align*}
\]

and cofiber sequence

\[
THH(N_w^w C^q) \to THH(ku) \to THH(N_q^w C)
\]

But $THH(N_q^w C) \simeq THH(KU)$

and $THH(N_q^w C^q) \not\simeq THH(H\mathbb{Z})$
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X \setminus Y) \]

“on” means “supported on”

Using \(\text{THH} \) of spectral categories of perfect complexes, get a cofiber sequence

\[\text{THH}(X \text{ on } Y) \to \text{THH}(X) \to \text{THH}(X \setminus Y) \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \]

“on” means “supported on”

Using \(THH \) of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \]

“on” means “supported on”

Using \(THH \) of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \]

“on” means “supported on”

Using \(\text{THH} \) of spectral categories of perfect complexes, get a cofiber sequence

\[\text{THH}(X \text{ on } Y) \to \text{THH}(X) \to \text{THH}(X - Y) \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.
How does this localization sequence fit in?

Quillen’s cofiber sequence

\[K(k) \to K(R) \to K(F) \]

generalizes to Thomason–Trobaugh’s cofiber sequence

\[K^B(X \text{ on } Y) \to K^B(X) \to K^B(X - Y) \]

“on” means “supported on”

Using \(THH \) of spectral categories of perfect complexes, get a cofiber sequence

\[THH(X \text{ on } Y) \to THH(X) \to THH(X - Y) \]

compatible with trace map from Thomason–Trobaugh cofiber sequence.

\[X \text{ on } (X - Y) \]
Localization sequence for THH of schemes

For open $U \supset Y$, $K(X \text{ on } Y) \simeq K(U \text{ on } Y)$

$$K(X - Y) \simeq K(X \text{ on } (X - Y))$$

When $X = \text{Spec } R$ for any commutative ring R, we can use $C = C_{HR}$ finite cell HR-modules.

Then cofiber sequence

$$THH(N^w C^q_{HR}) \to THH(N^w C_{HR}) \to THH(N^q C_{HR})$$

is equivalent to localization sequence for THH of schemes

$$THH(X \text{ on } Y) \to THH(X) \to THH(X - Y)$$

Because of this connection, will call this THH sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Localization sequence for THH of schemes

For open $U \supset Y$, $K(X \text{ on } Y) \simeq K(U \text{ on } Y))$

\[K(X - Y) \simeq K(X \text{ on } (X - Y)) \]

When $X = \text{Spec } R$ for any commutative ring R, we can use $\mathcal{C} = C_{HR}$ finite cell HR-modules.

Then cofiber sequence

\[THH(N^w C^q_{HR}) \rightarrow THH(N^w C_{HR}) \rightarrow THH(N^q C_{HR}) \]

is equivalent to localization sequence for THH of schemes

\[THH(X \text{ on } Y) \rightarrow THH(X) \rightarrow THH(X - Y) \]

Because of this connection, will call this THH sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Localization sequence for \(\text{THH} \) of schemes

For open \(U \supset Y \), \(K(X \text{ on } Y) \cong K(U \text{ on } Y) \)

\[
K(X - Y) \cong K(X \text{ on } (X - Y))
\]

When \(X = \text{Spec } R \) for any commutative ring \(R \), we can use \(C = C_{HR} \) finite cell \(HR \)-modules.

Then cofiber sequence

\[
\text{THH}(N^wC^q_{HR}) \to \text{THH}(N^wC_{HR}) \to \text{THH}(N^qC_{HR})
\]

is equivalent to localization sequence for \(\text{THH} \) of schemes

\[
\text{THH}(X \text{ on } Y) \to \text{THH}(X) \to \text{THH}(X - Y)
\]

Because of this connection, will call this \(\text{THH} \) sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Localization sequence for THH of schemes

For open $U \supset Y$, $K(X \text{ on } Y) \simeq K(U \text{ on } Y))$

$K(X - Y) \simeq K(X \text{ on } (X - Y))$

When $X = \text{Spec } R$ for any commutative ring R, we can use $C = C_{HR}$ finite cell HR-modules.

Then cofiber sequence

$$THH(N^wC^q_{HR}) \rightarrow THH(N^w_{HR}) \rightarrow THH(N^q_{HR})$$

is equivalent to localization sequence for THH of schemes

$$THH(X \text{ on } Y) \rightarrow THH(X) \rightarrow THH(X - Y)$$

Because of this connection, will call this THH sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Localization sequence for \(THH\) of schemes

For open \(U \supset Y\), \(K(X \text{ on } Y) \simeq K(U \text{ on } Y)\)

\[
K(X - Y) \simeq K(X \text{ on } (X - Y))
\]

When \(X = \text{Spec } R\) for any commutative ring \(R\), we can use \(C = C_{HR}\) finite cell \(HR\)-modules.

Then cofiber sequence

\[
\xrightarrow{\text{THH}} \xrightarrow{\text{THH}} \xrightarrow{\text{THH}}
\]

\[
THH(N^wC^q_{HR}) \rightarrow THH(N^wC_{HR}) \rightarrow THH(N^qC_{HR})
\]

is equivalent to localization sequence for \(THH\) of schemes

\[
THH(X \text{ on } Y) \rightarrow THH(X) \rightarrow THH(X - Y)
\]

Because of this connection, will call this \(THH\) sequence the “Thomason–Trobaugh” sequence to distinguish from the other “Hesselholt–Madsen” sequence.
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an exact category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a spectral category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an exact category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a spectral category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an exact category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a spectral category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Why Thomason–Trobaugh sequence different from the Hesselholt-Madsen sequence?

Hesselholt–Madsen Sequence
- Treat category of complexes as an *exact* category
- Mapping spectra always Eilenberg–Mac Lane spectrum – no homotopy groups except in degree zero
- Meaning of mapping spectra?

Thomason–Trobaugh Sequence
- Treat category of modules as a spectral category
- Mapping spectra generally have both positive and negative homotopy groups
- Uses extra structure of mapping spectra
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category
- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category
- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category
- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping *spaces*

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Simplicially enriched Waldhausen categories

Waldhausen Category

- Notion of weak equivalence
- Notion of cofibration
- Pushouts over cofibration (including sums)
- Nice relationship between weak equivalence and cofibration

Now also assume simplicial enrichment for mapping spaces

Without loss of generality: Modern homotopy theory says that this structure always arises and plays nicely with cofibrations and weak equivalences.
Connective spectral enrichment

From mapping space $\mathcal{C}(X, Y)$ get connective spectrum from gamma space

$$\mathcal{C}(X, Y)_{\Gamma_m} = \mathcal{C}(X, \bigvee_{\gamma} Y) \simeq \prod_{m} \mathcal{C}(X, Y)$$

Use this spectral enrichment to construct a new THH.

$$W^\Gamma_{THH}(C) := N_{\text{Bök}}^{\text{cyC}}(S \cdot \mathcal{C}^\Gamma)$$
Connective spectral enrichment

From mapping space $C(X, Y)$ get connective spectrum from gamma space

$$C(X, Y)_m^\Gamma = C(X, \mathop{\sqcup}_{m} Y)$$

Use this spectral enrichment to construct a new THH.

Definition

$$W^\Gamma THH(C) := N_{Bök}^{\text{cy}}(S \cdot C^\Gamma)$$
Trace Map

Definition

\[W^\Gamma \text{THH}(C) := N^{\text{cyc}}_{\text{Bök}}(S \cdot C^\Gamma) \]

Not hard to see \(N^{\text{cyc}}_{\text{Bök}}(S \cdot C^\Gamma) \cong N^{\text{cyc}}_{\text{Bök}}(S \cdot N^w C^\Gamma) \)

Get trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N^{\text{cyc}}_{\text{Bök}}(S \cdot N^w C^\Gamma) \cong W^\Gamma \text{THH}(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Trace Map

Definition

\[W^\Gamma \text{THH}(C) := \mathcal{N}_{\text{Bök}}^{\text{cyc}}(S \cdot C^\Gamma) \]

Not hard to see \(\mathcal{N}_{\text{Bök}}^{\text{cyc}}(S \cdot C^\Gamma) \sim \mathcal{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot C^\Gamma) \)

Get trace map

\[K(C) = \text{Ob}(S \cdot N^w \cdot C) \to \mathcal{N}_{\text{Bök}}^{\text{cyc}}(S \cdot N^w \cdot C^\Gamma) \sim W^\Gamma \text{THH}(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Trace Map

Definition

\[W^\Gamma THH(C) := N_{\text{B"ok}}^{\text{cyc}}(S \cdot C^\Gamma) \]

Not hard to see \(N_{\text{B"ok}}^{\text{cyc}}(S \cdot C^\Gamma) \cong N_{\text{B"ok}}^{\text{cyc}}(S \cdot N^w \cdot C^\Gamma) \)

Get trace map

\[K(C) = \text{Ob}(S \cdot N^w \cdot C) \rightarrow N_{\text{B"ok}}^{\text{cyc}}(S \cdot N^w \cdot C^\Gamma) \cong W^\Gamma THH(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Trace Map

Definition

\[W^\Gamma \text{THH}(C) := N_{\text{cyc}}^{\text{B"ok}}(S \cdot C^\Gamma) \]

Not hard to see
\[N_{\text{cyc}}^{\text{B"ok}}(S \cdot C^\Gamma) \cong N_{\text{cyc}}^{\text{B"ok}}(S \cdot N^w C^\Gamma) \]

Get trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N_{\text{cyc}}^{\text{B"ok}}(S \cdot N^w C^\Gamma) \cong W^\Gamma \text{THH}(C) \]

as inclusion of objects

When \(C \) has intrinsic mapping spectra, trace map factors through this non-connective enrichment.
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma (n) = |C(X, \bigvee_{S^n} Y)| \quad C(X, Y)^S (n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^\Gamma \to C(X, Y)^S \]

often connective cover,
e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N^\text{cyc}_{\text{Bök}} (S \cdot N^w C^\Gamma) \simeq W^\Gamma \text{THH}(C) \]

\[N^\text{cyc}_{\text{Bök}} (S \cdot N^w C^S) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^Γ(n) = |C(X, Y)| \quad C(X, Y)^S(n) = |C(X, Y ⊗ S^n)| \]

 Canonical map

\[C(X, Y)^Γ \to C(X, Y)^S \]

often connective cover,
e.g., when \(C(X, Y) \to C(ΣX, ΣY) \) is a weak equivalence

Trace map

\[K(C) = Ob(S\bullet N^w_C) \to N_{Bök}^{cyc}(S\bullet N^w_C)^Γ \simeq WΓ THH(C) \]

\[N_{Bök}^{cyc}(S\bullet N^w_C^S) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^{\Gamma}(n) = |C(X, \bigvee_{S^n} Y)| \quad C(X, Y)^{S}(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^{\Gamma} \to C(X, Y)^{S} \]

often connective cover,
e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N^\text{cyc Bök}(S \cdot N^w C^{\Gamma}) \cong W^{\Gamma} \text{THH}(C) \]

\[N^\text{cyc Bök}(S \cdot N^w C^S) \]

M.A. Mandell (IU) Localization Sequences in THH Jan 2012
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^{\Gamma}(n) = |C(X, \bigvee_{S^n} Y)| \quad C(X, Y)^{S}(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^{\Gamma} \to C(X, Y)^{S} \]

often connective cover,
e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N_{Bök}^{\text{cyc}}(S \cdot N^w C^{\Gamma}) \simeq W^{\Gamma} \text{THH}(C) \]

\[N_{Bök}^{\text{cyc}}(S \cdot N^w C^{S}) \]
Connective and non-connective enrichments

Connective enrichment vs. non-connective enrichment

\[C(X, Y)^\Gamma(n) = |C(X, \bigvee_{S^n} Y)| \quad C(X, Y)^S(n) = |C(X, Y \otimes S^n)| \]

Canonical map

\[C(X, Y)^\Gamma \to C(X, Y)^S \]

often connective cover,
e.g., when \(C(X, Y) \to C(\Sigma X, \Sigma Y) \) is a weak equivalence

Trace map

\[K(C) = \text{Ob}(S \cdot N^w C) \to N_{\text{Bök}}^{\text{cyc}}(S \cdot N^w C^\Gamma) \cong W^\Gamma \text{THH}(C) \]
Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* THH(\mathcal{E})$.
Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* THH(\mathcal{E})$.

Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma \mathrm{THH}(\mathcal{E})$ is the Dundas–McCarthy $\mathrm{THH}(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $\mathrm{THH}(\mathcal{E}) \simeq \mathrm{THH}(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* \mathrm{THH}(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* \mathrm{THH}(\mathcal{E})$.
Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* THH(\mathcal{E})$.

Do we actually get something different?

Let \mathcal{E} be an exact category, viewed as a Waldhausen category with weak equivalences the isomorphisms and mapping spaces discrete.

Then $\cal W^\Gamma THH(\mathcal{E})$ is the Dundas–McCarthy $THH(\mathcal{E})$.

Now let \mathcal{E} be the exact category of locally free sheaves on a quasi-projective variety X.

Can give \mathcal{E} a non-connective spectra enrichment \mathcal{E}^S that correctly captures the fact that Ext in \mathcal{E} can be non-trivial.

When X is affine $\mathcal{E} \simeq \mathcal{E}^S$ and $THH(\mathcal{E}) \simeq THH(\mathcal{E}^S)$.

Using \mathcal{E}^S, $\pi_* THH(\mathcal{E}^S)$ is a quasi-coherent sheaf over X. This does not hold in general for $\pi_* THH(\mathcal{E})$.
Theorem (Sphere Theorem)

Let \mathcal{C}_R be the Waldhausen category of finite cell R-modules for R a connective EKMM S-algebra or R a simplicial R-algebra. Then $W^\Gamma THH(\mathcal{C}_R) \simeq THH(R)$.

Does not hold if we do not assume connective.

Theorem generalizes to any simplicially enriched Waldhausen category \mathcal{C} that has a set Q of generators such that the mapping spectra between objects in Q are connective.
What about for categories of \(R \)-modules in spectra

Theorem (Sphere Theorem)

Let \(\mathcal{C}_R \) be the Waldhausen category of finite cell \(R \)-modules for \(R \) a connective EKMM S-algebra or \(R \) a simplicial \(R \)-algebra. Then

\[
W^\Gamma \text{THH}(\mathcal{C}_R) \cong \text{THH}(R).
\]

Does not hold if we do not assume connective.

Theorem generalizes to any simplicially enriched Waldhausen category \(\mathcal{C} \) that has a set \(Q \) of generators such that the mapping spectra between objects in \(Q \) are connective.
What about for categories of R-modules in spectra

Theorem (Sphere Theorem)

Let \mathcal{C}_R be the Waldhausen category of finite cell R-modules for R a connective EKMM S-algebra or R a simplicial R-algebra. Then $\mathcal{W}^\Gamma THH(\mathcal{C}_R) \simeq THH(R)$.

Does not hold if we do not assume connective.

Theorem generalizes to any simplicially enriched Waldhausen category \mathcal{C} that has a set Q of generators such that the mapping spectra between objects in Q are connective.
A devissage theorem

Theorem

Let R be a connective EKMM S-algebra with $\pi_0 R$ connective and let \mathcal{P} be the category of cell R-algebras that have finitely many non-zero homotopy groups all of which are finitely generated. Then $W^\Gamma \text{THH}(\mathcal{P}) \simeq \text{THH}(\pi_0 R)$.

In particular $W^\Gamma \text{THH}(\mathcal{P})$ has zero negative homotopy groups. Using the natural (non-connective) mapping spectra, usually get negative homotopy groups for $\text{THH}(\mathcal{P})$ unless $R \simeq H\pi_0 R$.

For $R = ku$, $\mathcal{P} \simeq C^q$
A devissage theorem

Theorem

Let R be a connective EKMM S-algebra with $\pi_0 R$ connective and let \mathcal{P} be the category of cell R-algebras that have finitely many non-zero homotopy groups all of which are finitely generated. Then \[W^\Gamma THH(\mathcal{P}) \simeq THH(\pi_0 R). \]

In particular, $W^\Gamma THH(\mathcal{P})$ has zero negative homotopy groups. Using the natural (non-connective) mapping spectra, usually get negative homotopy groups for $THH(\mathcal{P})$ unless $R \simeq H\pi_0 R$.

For $R = ku$, $\mathcal{P} \simeq C^q$
A devissage theorem

Theorem

Let R be a connective EKMM S-algebra with $\pi_0 R$ connective and let \mathcal{P} be the category of cell R-algebras that have finitely many non-zero homotopy groups all of which are finitely generated. Then $W^\Gamma THH(\mathcal{P}) \simeq THH(\pi_0 R)$.

In particular $W^\Gamma THH(\mathcal{P})$ has zero negative homotopy groups. Using the natural (non-connective) mapping spectra, usually get negative homotopy groups for $THH(\mathcal{P})$ unless $R \simeq H\pi_0 R$.

For $R = ku$, $\mathcal{P} \simeq C^q$
Corollary: Localization sequence for the THH of topological K-theory

Define $W^\Gamma THH(ku \mid KU)$ as $N^{cyc}_{\text{Bök}}(S \cdot N^q C^\Gamma)$

Corollary

The cofiber sequence

$$N^{cyc}_{\text{Bök}}(S \cdot N^w (C^\Gamma)^q) \rightarrow N^{cyc}_{\text{Bök}}(S \cdot N^w C^\Gamma) \rightarrow N^{cyc}_{\text{Bök}}(S \cdot N^q C^\Gamma)$$

is weakly equivalent to a cofiber sequence

$$THH(\mathbb{Z}) \rightarrow THH(ku) \rightarrow W^\Gamma THH(ku \mid KU)$$

where the map $THH(\mathbb{Z}) \rightarrow THH(ku)$ is a certain previously known transfer map.
For \mathcal{C} the category of cell ku-modules

Connective and non-connective spectral enrichment give two different localization sequences:

\[
\begin{align*}
K(H\mathbb{Z}) & \to K(ku) \to K(KU) \\
\downarrow & \downarrow & \downarrow \\
THH(H\mathbb{Z}) & \to THH(ku) \to W[THH(ku \mid KU)]
\end{align*}
\]

THH(ku on $H\mathbb{Z}$) THH(ku) THH(KU)
For \mathcal{C} the category of cell ku-modules

Connective and non-connective spectral enrichment give two different localization sequences: