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Localization Sequences in THH and TC

Joint work with Andrew Blumberg

Preprint: arXiv:0802.3938 [math.KT]

Goal: Prove the analogue of the Thomason-Trobaugh K -theory
Mayer-Vietoris and localization theorems in THH and TC

Strategy: Prove the analogue of Keller’s Hochschild homology and
cyclic homology localization theorems for THH and TC

Recurring theme: connective vs. non-connective ring spectra
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Overview

Motivation

Why did this paper get bumped up ahead of the others in the long list
of papers still to write?

Hesselholt and Madsen: Conjectured “Additive Motivic Spectral
Sequence”

Abut to variant of TR
Edge homomorphism from De Rham–Witt complex
(“Homotopy invariant” TR is contractible)

Rumor: Geisser and Hesselholt proved Weibel conjecture in
characteristic p. (?)
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Cortiñas, Haesemeyer, Schlichting, and Weibel:
K -theory and singularities. Proved:
Weibel conjecture: K−nX = 0 for n > dim(X )

Vorst conjecture: Kdim(R)X = 0 for n > dim(X )

Over fields of characteristic zero using Mayer Vietoris and localization
in negative cyclic homology.

TC results to extend to fields of characteristic p. (?)
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Review of THH and TC of Rings

Hochschild Homology

Cyclic bar construction

Ncy
q R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

HH∗R is the homology of the resulting chain complex
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Review of THH and TC of Rings

Topological Hochschild Homology

Cyclic bar construction

Ncy
q HR = HR ∧ · · · ∧ HR︸ ︷︷ ︸

q factors

∧HR

HR ⊗ · · · ⊗ HR

∧ ∧

HR

THH(R) is the resulting spectrum
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Review of THH and TC of Rings

Morita Invariance

Both HH and THH have Morita invariance:

HH(R) ' HH(MnR)

THH(R) ' THH(MnR)

=⇒ Dennis and cyclotomic trace maps
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Review of THH and TC of Rings

Dennis Trace / Cyclotomic Trace

Map BGLnR → BcyGLnR:

Bq(GLnR) = GLnR × · · · ×GLnR︸ ︷︷ ︸
q factors

Bcy
q (GLnR) = GLnR × · · · ×GLnR︸ ︷︷ ︸

q factors

×GLnR

by (g1| · · · |gq) 7→ (g1| · · · |gq)g−1
q · · · g−1

1 .

Map BcyGLnR → Ncy (MnR) or to Ncy
q (HMnR).

Ncy
q (MnR) = MnR ⊗ · · · ⊗MnR︸ ︷︷ ︸

q factors

⊗MnR

Fit together to a map KR = (
∐

BGLnR)+ → THH(R)→ HH(R).
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Review of THH and TC of Rings

Why THH?

Relatively easy to compute

Stabilization of K -theory [Dundas-McCarthy]

But. . .

Not really that close to K -theory

=⇒ HN and TC
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Review of THH and TC of Rings

Negative Cyclic and TC

Built from HH and THH
Still reasonably computable
Goodwillie: Relative HN is rationally equivalent to relative
K -theory (for surjective maps with nilpotent kernel).
McCarthy: Relative TC is p-equivalent to relative K -theory (for
surjective maps with nilpotent kernel).

Dundas: Generalized p-equivalence to maps of ring spectra.

Homotopy cartesian square

K (R)Q //

��

K (R′)Q

��

HN(R ⊗Q) // HN(R′ ⊗Q)

K (R)∧p //

��

K (R′)∧p

��

TC(R,p) // TC(R′,p)
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The K -Theory of Schemes

Quillen’s K -Theory of Schemes

K (X ) = K -theory of exact category of vector bundles on X .

Algebraic-geometric Remarks:
Definitively correct for quasi-projective varieties.
“Obviously” not necessarily correct for varieties that do not enough
vector bundles.

[SGA6 IV§2] K0 is K •naif.

Formulation of perfect complex: A complex of OX -modules that is
locally quasi-isomorphic to bounded complex of vector bundles.
Bounded derived category = full subcategory of derived category
of OX -modules consisting of the perfect complexes.
Bounded derived category is also the full subcategory of compact
objects. [An alternative characterization of perfect complexes.]
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The K -Theory of Schemes

Thomason’s K -Theory of Schemes

Basic Outline
Apply Waldhausen’s construction, which generalizes Quillen’s
from exact categories to categories with cofibrations and weak
equivalences
Work with Complicial biWaldhausen categories and functors:
Subcategories of categories of complexes on abelian categories
(with restrictions); functors induced by additive functors on the
underlying abelian categories.

This gives a K -theory of derived categories (of sorts):

Theorem. If a complicial functor between complicial biWaldhausen
categories induces an equivalence of derived categories, it induces an
equivalence of K -theory.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 11 / 30



The K -Theory of Schemes

Thomason’s K -Theory of Schemes

Basic Outline
Apply Waldhausen’s construction, which generalizes Quillen’s
from exact categories to categories with cofibrations and weak
equivalences
Work with Complicial biWaldhausen categories and functors:
Subcategories of categories of complexes on abelian categories
(with restrictions); functors induced by additive functors on the
underlying abelian categories.

This gives a K -theory of derived categories (of sorts):

Theorem. If a complicial functor between complicial biWaldhausen
categories induces an equivalence of derived categories, it induces an
equivalence of K -theory.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 11 / 30



The K -Theory of Schemes

Thomason’s K -Theory of Schemes

Consequence: Any subcategory (with restrictions) of perfect
complexes of OX -modules whose derived category is the bounded
derived category produces the same K -theory.

K (X ) = K -theory of the category of perfect complexes on X .

Variant: For Y a closed subset of X

K (X on Y ) = K -theory of the category of perfect complexes on X that
are supported on Y (acyclic off Y ).
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The K -Theory of Schemes

Thomason Trobaugh Localization Theorem

Localization Theorem. Let U ⊂ X be open, Y = X − U. There is a
long exact sequence

· · · → Kn(X on Y )→ Kn(X )→ Kn(U)→ · · ·
· · · → K0(X on Y )→ K0(X )→ K0(U)

Mayer-Vietoris Theorem. Let U,V ⊂ X with X = U ∪ V . There is a
long exact sequence

· · · → Kn(U ∩ V )→ Kn(U)⊕ Kn(V )→ Kn(X )→ · · ·
· · · → K0(U ∩ V )→ K0(U)⊕ K0(V )→ K0(X )
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The K -Theory of Schemes

Proof

Waldhausen: Fibration sequences for “weaker” weak equivalences.

C category with a weak equivalences w , and another collection of
weak equivalences v with v ⊂ w .

Cw = the subcategory of C of objects w-equivalent to the trivial object.

Theorem. (Waldhausen localization sequence)
The following square is homotopy cartesian:

K (Cw , v) //

��

K (Cw ,w)

��

K (C, v) // K (C,w)

K (Cw ,w) is trivial.
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The K -Theory of Schemes

Proof

Take C = Perfect complexes on X

v = Quasi-isomorphisms
w = Maps that are quasi-isomorphisms on U
v ⊂ w

Cw = Perfect complexes supported on Y .

Thomason and Trobaugh prove that the derived category D(C,w) is
cofinal in the bounded derived category of U.
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The K -Theory of Schemes

Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects Sc

and is closed under small coproducts
and assume Sc is small.

Let R be localizing subcategory gen. by some set of compact objects.
Let T be the triangulated quotient S/R.

This means T is the localization of S with respect to the maps whose
cofibers are in R.

Theorem
The compact objects Sc of S map to compact objects of T .
The induced functor Sc/Rc → T c is fully faithful and T c is the
thick subcategory generated by its image.

T-T localization set-up can be reformulated in terms of quotients of
triangulated categories.
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The K -Theory of Schemes

Remark on Cofinality

Cofinality implies iso on Kn for n > 0 but only an injection on K0. This is
why the localization sequence is generally not surjective on K0:

· · · → Kn(X on Y )→ Kn(X )→ Kn(U)→ · · ·
· · · → K0(X on Y )→ K0(X )→ K0(U)

The sequence actually continues with the Bass negative K -groups:

· · · → K0(X on Y )→ K0(X )→ K0(U)→ K−1(X on Y )→ K−1(X )→ · · ·

These groups are defined inductively by

K−n−1X = Coker
(
K−n(X × Spec Z[x ])⊕ K−n(X × Spec Z[x−1])

→ K−n(X × Spec Z[x , x−1])
)
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The K -Theory of Schemes

Thomason Trobaugh Bass K -Theory Spectrum

Thomason and Trobaugh construct a non-connective K -theory
spectrum K BX essentially by doing Bass’ algebraic construction on the
spectrum level.

In terms of K B, the localization theorem asserts a cofiber sequence of
spectra

K B(X on Y )→ K B(X )→ K (U)

and the Mayer-Vietoris theorem asserts a cofiber sequence of spectra

K B(U ∩ V )→ K B(U) ∨ K B(V )→ K B(U ∪ V )
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THH of Schemes

First Try: Hochschild-Mitchell construction

For an additive category C

Ncy
q C =

⊕
x0,...,xq∈C

C(xq, xq−1)⊗ · · · ⊗ C(x1, x0)⊗ C(x0, xq)

Constructs HH(C).

Using (bar construction) Eilenberg-Mac Lane spectra, we get a
spectral category CS .

Ncy
q CS =

∨
x0,...,xq∈C

C(xq, xq−1) ∧ · · · ∧ C(x1, x0) ∧ C(x0, xq)

Constructs THH(C).

We could apply this to the category of vector bundles.
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THH of Schemes

Second Try: Dundas-McCarthy

Invariance problems of Hochschild-Mitchell construction: Treats an
exact category C as an additive category. (Only sees split exact
sequences.)

Solution:
Mix Waldhausen’s S•-construction in with the Hochschild-Mitchell
construction .

Nice consequence:
Can reformulate cyclotomic trace as inclusion of objects in
Hochschild-Mitchell construction.
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THH of Schemes

Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.

Example. Look at the projective (elliptic) curve

x0x2
2 = x3

1 − 3x2
0 x1

This has an open cover by the affines
U = {x0 6= 0} = Spec Z[x , y ]/(y2 = x3 − 3x)
V = {x2 6= 0} = Spec Z[u, v ]/(u = v3 − 3u2v)

for x = x1/x0, y = x2/x0, u = x0/x2, v = x1/x2

Then U ∩ V = Spec Z[x , y , y−1]/(y2 = x3 − 3x), but

THH0(U)⊕THH0(V ) = Z[x , y ]⊕Z[u, v ]→ Z[x , y , y−1] = THH0(U ∩V )

is not surjective. (Here u 7→ 1/y and v 7→ x/y .)
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THH of Schemes

Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:

Coker
(
THH0(R[x ])⊕ THH0(R[x−1])→ THH0(R[x , x−1])

is always surjective. It is

R[x ]⊕ R[x−1]→ R[x , x−1].

This problem has a different source. (Related to non-connective
spectra in a different way.)
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THH of Schemes

Third Try: Geisser-Hesselholt

THH of rings localizes: π∗THH(R[S−1]) = π∗THH(R)⊗ R[S−1].

In other words, for a ring π∗THH(R) is a quasi-coherent sheaf

Define THH(X ) as the Čech spectrum of an affine open cover, or as
the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of THH(X on Y ) for localization sequence.
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THH of Schemes

Construction for HH: Keller

Force localization to hold:

Setup: S a DG-category, R a subcategory.
E.g., S a category of complexes, R the acyclics.

Define: HH(S,R) as the cofiber of Hochschild-Mitchell constructions

HH(S,R) = Cofiber(HH(R)→ HH(S))

(Definition actually due to Kassel.)

Keller then proves (roughly) that a map (S,R)→ (S ′,R′) that induces
an equivalence on triangulated quotients induces an equivalence on
HH.
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THH of Schemes

Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
π0 of the mapping spectra, or graded homotopy category defined by π∗
of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category
whose homotopy category is triangulated.

Work of Shipley shows that we can enhance a DG-category into a
spectral category.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 25 / 30



THH of Schemes

Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
π0 of the mapping spectra, or graded homotopy category defined by π∗
of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category
whose homotopy category is triangulated.

Work of Shipley shows that we can enhance a DG-category into a
spectral category.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 25 / 30



THH of Schemes

Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
π0 of the mapping spectra, or graded homotopy category defined by π∗
of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category
whose homotopy category is triangulated.

Work of Shipley shows that we can enhance a DG-category into a
spectral category.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 25 / 30



THH of Schemes

Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
π0 of the mapping spectra, or graded homotopy category defined by π∗
of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category
whose homotopy category is triangulated.

Work of Shipley shows that we can enhance a DG-category into a
spectral category.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 25 / 30



THH of Schemes

DK-Invariance

Basic kind of equivalence of spectral categories: Dwyer-Kan
equivalence.

A DK-equivalence of spectral categories is a spectral functor that is a
weak equivalence on mapping spectra and an equivalence on the
homotopy category.

Theorem
A DK-equivalence of spectral categories induces a weak equivalence
of this THH.
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THH of Schemes

Morita Invariance / Cofinality

Up to DK-equivalence any (small) spectral category embeds in a
pretriangulated spectral category.

We use this to simplify statements

Theorem
Let C ⊂ C′ be full subcategories of the pretriangulated spectral
category D with the objects of C′ contained in the thick subcategory
generated by the objects of C (in the triangulated category π0D). Then

THH(C)→ THH(C′)

is a weak equivalence.
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THH of Schemes

Localization Theorem

Let A ⊂ B and A′ ⊂ B′ be inclusions of full spectral categories and
assume that they are all pretriangulated. Let f : B → B′ be a spectral
functor that restricts to A → A′.

Theorem (Abstract localization theorem)
If the induced map of triangulated quotients is an equivalence then the
map of cofibers

Cofiber(THH(A)→ THH(B)) −→ Cofiber(THH(A′)→ THH(B′))

is an equivalence.
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THH of Schemes

Conseqences

We can use a spectral model of the derived category of perfect
complexes on X to define THH(X )

We can use the full subcategory of U-acyclics to define THH(X on Y )

Theorem (Localization for open subschemes)
There is a cofibration sequence of spectra

THH(X on Y )→ THH(X )→ THH(U)

Theorem (Mayer-Vietoris)
There is a cofibration sequence of spectra

THH(U ∩ V )→ THH(U) ∨ THH(V )→ THH(U ∪ V )
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THH of Schemes

Concluding remarks

In the case of a quasi-projective scheme (or more generally a scheme
with an ample family of line bundles), the bounded derived category is
precisely the thick subcategory generated by the vector bundles.

The exact category of vector bundles, made into a spectral category, is
the connective cover of the (full subcategory) spectral category we use
above. Algebraic-geometric remarks aside, the difference between the
last approach above and the first two approaches is using the full
non-connective mapping spectra.

It turns out that for a connective ring spectrum R, forming the spectral
category using the correct non-connective mapping spectra gives the
same THH as the connective-cover spectral category. But this is
another paper and another talk. . .
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