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Why did this paper get bumped up ahead of the others in the long list
of papers still to write?

Cortinas, Haesemeyer, Schlichting, and Weibel:
K-theory and singularities.

M.A.Mandell (IU)

Localization Sequences in THH and TC November 2008 3/30



Overview
Motivation

Why did this paper get bumped up ahead of the others in the long list
of papers still to write?

Cortinas, Haesemeyer, Schlichting, and Weibel:
K-theory and singularities. Proved:
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Overview
Motivation

Why did this paper get bumped up ahead of the others in the long list
of papers still to write?

Cortinas, Haesemeyer, Schlichting, and Weibel:
K-theory and singularities. Proved:

@ Weibel conjecture: K_,X = 0 for n > dim(X)

@ Vorst conjecture: %am(R) 0 for n > dim(X)

Over fields of characteristic zero using Mayer Vietoris and localization
in negative cyclic homology.

TC results to extend to fields of characteristic p. (?)

Rumor: Geisser and Hesselholt proved Weibel conjecture in
characteristic p. (?)
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Review of THH and TC of Rings
Hochschild Homology

Cyclic bar construction 0‘54 he
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5 the homology of the resulting chain complex
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Review of THH and TC of Rings
Topological Hochschild Homology

Cyclic bar construction

NngH:HR/\---/\HFH\HR
N—_———

q factors

HR®---® HR
A A
HR

THH(R) is the resulting spectrum

————
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Review of THH and TC of Rings
Morita Invariance

Both HH and THH have Morita invariance:
EEE——

HH(R) ~ HH(M,R)
THH(R) ~ THH(M,R)

S
‘:> Dennis and cyclotomic trace @
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Review of THH and TC of Rings

Dennis Trace / Cyclotomic Trace

Map L,R — BYGL,R:
Ber st
Eq(GLnH) = GLnR X oo X GLnR %

q factors

Bf,y(GLnR) = GLpR x --- x GL,R xGLyR
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Dennis Trace / Cyclotomic Trace

Map BGL,R — B% GL,R:

Bq(GLnR) = GLnR X oo X GLnR
q factors

Bf,y(GLnR) = GLpR x --- x GL,R xGLyR

~~

g factors
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Map\B¥ GL,R — NCV(M,&r to

g factors
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Review of THH and TC of Rings

Dennis Trace / Cyclotomic Trace

Map BGL,R — B% GL,R:

Bq(GLnR) = GLnR X oo X GLnR

q factors
Bgy(GLnR) =GL,R x --- x GL,R xGLR
qfa&ors

by (g1l -199) = (911" 19¢)9q" -~ 97 "-
Map B% GL,R — N (M,R) or to Ng¥ (HM,R).

g factors

/’\a
Fit together to a map K = (]_[ BGL,R)" — THH(R) — HH(R).
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Review of THH and TC of Rings
Why THH?

@ Relatively easy to compute
@ Stabilization of K-theory [Dundas-McCarthy]

But. ..

Not really that close to K-theory
=

A )

= HN and TC

e
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Review of THH and TC of Rings
Negative Cyclic and TC

@ Built from HH and THH
@ Still reasonably computable

@ Goodwillie: Relative is rationally equivalent to relative
. . . . w
K-thegqry (for surjective maps with nilpotentk&rnel).

HOI'T'IOTOpy cartesian square Svr, Nt l’ Ww

K(R)g —— K(R')q

| 3]

HN(R2.0) — HN(RL2.0) 0
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Review of THH and TC of Rings
Negative Cyclic and TC

@ Built from HH and THH
@ Still reasonably computable

@ Goodwillie: Relative HN is rationally equivalent to relative
K-theory (for surjective maps with nilpotent kernel).

@ McCarthy: Relative TC is p-equivalent to relative K-theory (for

surjective maps with nilpotent kernel).

Homotopy cartesian square
K(ff)@%wj)@ K(f@—> K(RE)
4l

HN(R ® Q) —— HN(R' @ Q) TC‘RI.Q)% TCsR’ip) lIJ
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Review of THH and TC of Rings
Negative Cyclic and TC

@ Built from HH and THH
@ Still reasonably computable

@ Goodwillie: Relative HN is rationally equivalent to relative
K-theory (for surjective maps with nilpotent kernel).

@ McCarthy: Relative TC is p-equivalent to relative K-theory (for
surjective maps with nilpotent kernel).

@ Dundas: Generalized p-equivalence to maps of ring spectra.

Homotopy cartesian square

K(R)g ——— K(R')o K(R)p —— K(R)p

| | J |

HN(R® Q) —— HN(R'®Q)  TC(R,p) —— TC(R', p)

o
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The K-Theory of Schemes
Quillen’s K-Theory of Schemes

[~ PNTPOCY

K(X) = K-theory of exact category of vector bundles on X.
rpma— e

Algebraic-geometric Remarks:
@ Definitively correct for quasi-projective varieties. l\»‘"’"’

@ “Qbviously” jnot necese® Ay correct for varieties that do not enough
vector bundles.
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The K-Theory of Schemes
Quillen’s K-Theory of Schemes

K(X) = K-theory of exact category of vector bundles on X.

Algebraic-geometric Remarks:
@ Definitively correct for quasi-projective varieties. (va d“"":?"

@ “Obviously” not necessarily correct for varieties that do not enough
vector bundles. [SGAG IV§2] Ky is K3 (S pvfick

@ Formulation of perfect complex: A complex of Ox-modulestdat is
locally quasi-isomorphic to bounded complex of vector bundles.

@ Bounded derived categqry = full subcategory of derived category

of Ox-modules consisting of the perfect comglexes.
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The K-Theory of Schemes
Quillen’s K-Theory of Schemes

K(X) = K-theory of exact category of vector bundles on X.

Algebraic-geometric Remarks:
@ Definitively correct for quasi-projective varieties.

@ “Obviously” not necessarily catrectfor varieties that do not enough
vector bundles. [SGAG IV§2] Ky is K3

@ Formulation of perfect complex: A complex of Ox-modules that is
locally quasi-isomorphic to bounded complex of vector bundles.

@ Bounded derived category = full subcategory of derived category
of Ox-modules consisting of the perfect complexes.

1 Bounded derived category is also the full subcategory of compact
objects. [An alternative characterization of perfect complexes.]
p—

VX8 Y \EL :6‘&*(-}]]
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The K-Theory of Schemes

Thomason’s K-Theory of Schemes

Basic Outline

@ Apply Wal ’s construction, which generalizes Quillen’s

from exact categories to categories with cofibrations and.weak
gquivalances

@ Work with Complicial biWaldhausen categories and functors:
Subcategories of cafegories of complexes on abelian categories
(with restrictions); functors induced by additive functors on the
underlying abelian categories.
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The K-Theory of Schemes

Thomason’s K-Theory of Schemes

Basic Outline

@ Apply Waldhausen’s construction, which generalizes Quillen’s
from exact categories to categories with cofibrations and weak
equivalences

@ Work with Complicial biWaldhausen categories and functors:
Subcategories of categories of complexes on abelian categories
(with restrictions); functors induced by additive functors on the
underlying abelian categories.

This gives a K-theory of derived categories (of soris):

Theorem. If a complicial functor between complicial biWaldhausen
categories induces an equivalence of derived categories, it induces an
equivalence of K-theory. Vv\..m,lt.,] -+ aAfends

@rovwo’ l\(.,E,AM Baly o~ SRSt i1}
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The K-Theory of Schemes

Thomason’s K-Theory of Schemes

Consequence: Any subcategory (with restrictions) of pe’rf_ect
complexes of Ox-modules whose derived category is the bounded
derived category produces the same K-theory.

(Y "\')
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Consequence: Any subcategory (with restrictions) of perfect
complexes of Ox-modules whose derived category is the bounded
derived category produces the same K-theory.

K(X) = K-theory of the category of perfect complexes on X.
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The K-Theory of Schemes

Thomason’s K-Theory of Schemes

Consequence: Any subcategory (with restrictions) of perfect
complexes of Ox-modules whose derived category is the bounded
derived category produces the same K-theory.

K(X) = K-theory of the category of perfect complexes on X.

Variant: For Y a closed subset of X Lz XY
o= - -

K(X on Y) = K-theory of the category of perfect complexes on X that

are supported on Y (acyclic off Y)
— )
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The K-Theory of Schemes
Thomason Trobaugh Localization Theorem

Localization Theorem. Let U C X be open, Y = X — U. Thereis a
long exact sequence - ‘

= Kp(Xon Y) = Kn(X) = Ky(U) — ---
-+ — Kp(XonY) — Ko(X) — Ko(U)
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The K-Theory of Schemes
Thomason Trobaugh Localization Theorem

Localization Theorem. Let U C X be open, Y = X — U. Thereis a
long exact sequence

-+ — Kh(X on Y!—> Kn(X) — Kp(U) — -+
e — Ko(X on Y) — Ko(X) — Ko(U)

Mayer-Vietoris Theorem. Let U, V C X with X = UU V. There is a
long exact sequence

= Kn(UDV) = Kn(U) @ Kn(V) = Kn(X) = ---
= Ko(UN V) — Ko(U) @ Ko(V) — Ko(X)

o
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The K-Theory of Schemes

Waldhausen: Fibration seque weaker” weak equivalences.
—

C category with a weak equivalences w, and another collection of
weak equivalences_v with v C w.
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The K-Theory of Schemes

Waldhausen: Fibration sequences for “weaker” weak equivalences.

C category with a weak equivalences w, and another collection of
weak equivalences v with v C w.

C" = the subcategory of C of objects w-equivalent to the trivial object.

K(C%, w) is trivial. lIJ
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The K-Theory of Schemes
Proof

Waldhausen: Fibration sequences for “weaker” weak equivalences.

C category with a weak equivalences w, and another collection of
weak equivalences v with v C w.

C" = the subcategory of C of objects w-equivalent to the trivial object.

Theorem. (Waldhausen localization sequence)
The following square is homotopy cartesian:

K", v) —— K(C",w)

| |

K({C,v) —— K(C,w)

K(C%, w) is trivial. lIJ
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The K-Theory of Schemes

Take C = Perfect complexes on X
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The K-Theory of Schemes

Take C = Perfect complexes on X

v = Quasi-isomorphisms

w = Maps that are quasi-isomorphisms on U
vCw =z
> -
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The K-Theory of Schemes

Take C = Perfect complexes on X

v = Quasi-isomorphisms

w = Maps that are quasi-isomorphisms on U
vcw

C" = Perfect complexes supported on Y.

—~—
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The K-Theory of Schemes
Proof

Take C = Perfect complexes on X

v = Quasi-isomorphisms
Swe=Maps that are quasi-isomorphisms @
vcw

C" = Perfect complexes supporied on-

Thomason and Trobaugh prove that the derived category DSC, w) is
cofinal in the bounded derived category of U.
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The K-Theory of Schemes

Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects S°
and is closed under small coproducts
and assume S¢ is small.

Let R be localizing subcategory gen. by some set of compact objects.
Let 7 be the triangulated quotient S/R.

T-T localization set-up can be reformulated in terms of quoti@ llJ
ries.

/

M.A.Mandell (IU)

Localization Sequences in THH and TC

November 2008 16/30



The K-Theory of Schemes

Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects S°
and is closed under small coproducts
and assume S¢ is small.
Let R be localizing subcategory gen. by some set of compact objects.
Let 7 be the triangulated quotient Sﬁ @ <

This means 7 is the localization of S with respect to the maps whose
ﬁ f

cofibers are in B

T-T localization set-up can be reformulated in terms of quotients of
triangulated categories. '-IJ

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 16/30



The K-Theory of Schemes

Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects S°
and is closed under small coproducts
and assume S¢ is small.
Let R be localizing subcategory gen. by some set of compact objects.
Let 7 be the triangulated quotient S/R.

This means 7 is the localization of S with respect to the maps whose
cofibers are in R.

Theorem
@ The compact objects S¢ of S map to compact objects of 7.
@ The induced functor S¢/R¢ — T ¢ is fully faithful and 7°¢ is the
thick subcategory generated by its image.

T-T localization set-up can be reformulated in terms of quotients of
triangulated categories. '-IJ
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The K-Theory of Schemes
Remark on Cofinality

Cofinality implies iso on.KLfor n > 0 but only an injection on Ky. This is
why the localization sequence is generally not surjective on Roi

= Kp(XonY) — Kp(X) — Kp(U) — - -
-+ — Ko(XonY)— Ky(X) — Ko(’U)
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The K-Theory of Schemes
Remark on Cofinality

Cofinality implies iso on K}, for n > 0 but only an injection on K. This is
why the localization sequence is generally not surjective on Kj:

= Kp(XonY) — Kp(X) — Kp(U) — - -
o Ko(X on Y) — Ko(X) — Ko(U)

The sequence actually continues with the Bass negative K-groups:

o Ko(XOH Y) — Ko(X) — Ko(U) — K,1(Xon Y) — K,1(X) —p ooo
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The K-Theory of Schemes
Remark on Cofinality

Cofinality implies iso on K}, for n > 0 but only an injection on K. This is
why the localization sequence is generally not surjective on Kj:

= Kp(XonY) — Kp(X) — Kp(U) — - -
o Ko(X on Y) — Ko(X) — Ko(U)

The sequence actually continues with the Bass negative K-groups:

- = Ko(X on Y) — Ko(X) — Ko(U) — K_1(Xon Y) — K_1(X) — ---

These groups are defined inductively by *.(R(D)e K-.\Lg[xﬂ)

k. RCr<)
K_n_1X = Coker (K_n(X x SpecZ[x]) ® K_n(X x SpecZ[x'])

- = Kon(X x SpecZix,x"])) [§
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The K-Theory of Schemes

Thomason Trobaugh Bass K-Theory Spectrum

Thomason and Trobaugh construct a non-connective K-theory

spectrum KB X essentially by doing Bass’ algebraic construction on the
spectrum level.

——
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The K-Theory of Schemes

Thomason Trobaugh Bass K-Theory Spectrum

Thomason and Trobaugh construct a non-connective K-theory

spectrum KBX essentially by doing Bass’ algebraic construction on the
spectrum level.

In terms of K&, the localization theorem asserts a cofiber sequence of
spectra

KB(X on Y) — KB(X) — K(U)
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The K-Theory of Schemes

Thomason Trobaugh Bass K-Theory Spectrum

Thomason and Trobaugh construct a non-connective K-theory

spectrum KBX essentially by doing Bass’ algebraic construction on the
spectrum level.

In terms of K&, the localization theorem asserts a cofiber sequence of
spectra
KB(Xon Y) — KB(X —>K3U)

and the Mayer-Vietoris theorem asserts a cofiber sequence of spectra

KB(UNV)— KB(U) v KB(V) = KB(UU V)

M.A.Mandell (IU) Localization Sequences in THH and TC

November 2008 18/30



THH of Schemes

First Try: Hochschild-Mitchell construction

e
For an additive category C R"J l“‘"

NgC= (D Clxgxg-1)® - @C(x1, %) @ (X0, Xq)

-

Constructs HH(C).
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THH of Schemes

First Try: Hochschild-Mitchell construction

For an additive category C

NgC= P Clxgx-1)® - ®C(x1,%) ®C(X0, Xq)

Constructs HH(C).

Using (bar construction) Eilenberg-Mac Lane spectra, we get a
: g ( o ) g Spectra, we geta

Nges = \/  C(xq,Xg—1) A+ AC(X1,X0) A C(X0, Xq)

Constructs THH(C).
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THH of Schemes

First Try: Hochschild-Mitchell construction

For an additive category C

NgC= P Clxgx-1)® - ®C(x1,%) ®C(X0, Xq)
X0,--,XqE€C

Constructs HH(C).

Using (bar construction) Eilenberg-Mac Lane spectra, we get a
spectral category C°.

Nges = \/  C(xq,Xg—1) A+ AC(X1,X0) A C(X0, Xq)

Xg,--,Xg€C

Constructs

We could apply this to the category of vector bundles.
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THH of Schemes

Second Try: Dundas-McCarthy

Invariance problems of Hochschild-Mitchell construction: Treats an
exact category C as an additive category. (Only sees split exact
sequences.)
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THH of Schemes

Second Try: Dundas-McCarthy

Invariance problems of Hochschild-Mitchell construction: Treats an
exact category C as an additive category. (Only sees split exact
sequences.)

Solution:
Mix Waldhausen’s S,-construction in with the Hochschild-Mitchell
construction .
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THH of Schemes

Second Try: Dundas-McCarthy

Invariance problems of Hochschild-Mitchell construction: Treats an
exact category C as an additive category. (Only sees split exact
sequences.)

Solution:
Mix Waldhausen’s S,-construction in with the Hochschild-Mitchell
construction .

Nice consequence:

Can reformulate cyclotomietrase as inclusion of objects in { ‘, ‘

Hochschild-Mitchell construction.

——
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THH of Schemes

Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.
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THH of Schemes
Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.

Example. Look at the projective (elliptic) curve

2 3

XoX5 = X3 — 3x3x

This has an open cover by the affines
U = {x # 0} = SpecZ[x, y]/(y* = x* — 3x)
V = {xx # 0} = SpecZ[u, v]/(u = v® — 31?v)
for x = Xy /X0, ¥ = X2 /X0, U= Xo/Xo, V= X1 /X2

Then UN V = SpecZ[x,y,y~']/(y? = x3 — 3x),
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THH of Schemes
Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.
Example. Look at the projective (elliptic) curve j%

XoX5 = X3 — 3x3x

A s (R
This has an open cover by the affines = <
U = {xo # 0} = SpecZ[x,y]/(y* = x* — 3x) w-*;,

V = {xp # 0} = Spec Z[u, v]/(u = v® — 3u?V) o
for x = Xy /X0, ¥ = X2 /X0, U= Xo/Xo, V= X1 /X2 %L‘)f wfa\

-
Then Un V = SpecZ[x,y,y ']/(y* = x* = 3x), but 6/ \c‘/_r_

Tar_ (= h'(E0%)
THHo(U) & THH,(V) = Z[x, Y] & Z[u, V] — ZIx,3,y~'] = THHy(UN V)

is not surjective. (Here u— 1/y and v — x/y.) [IJ
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THH of Schemes

Bass Construction

This is not related to the Bass construction.
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THH of Schemes
Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:
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THH of Schemes
Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:

Coker (THHo(R[X]) ® THHo(R[x~']) — THHo(R[x, x'])

is always surjective. It is

% Y RIxeRX Y RkXx ]
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THH of Schemes
Bass Construction

This is not related to the Bass construction.
No negative Bass THH groups for rings:
Coker (THHo(R[X]) ® THHo(R[x~']) — THHo(R[x,x'])
is always surjective. It is
R[x] & R[x~'] — R[x,x~"].

This problem has a different source. (Related to non-connective
spectra in a different way.)
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Third Try: Geisser-Hesselholt

THH of rings localizes: 7. THH(R[S™!]) = 7. THH(R) ® R[S™].
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Third Try: Geisser-Hesselholt

THH of rings localizes: 7. THH(R[S™']) = 7. THH(R) ® R[S™"].

In other words, for a ring = THH(R) is a quasi-coherenf sheaf
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Third Try: Geisser-Hesselholt

THH of rings localizes: 7. THH(R[S™']) = 7. THH(R) ® R[S™"].
In other words, for a ring 7. THH(R) is a quasi-coherent sheaf

Define THH(X) as the Cech spectrum of an affine open cover, or as
the hyper-cohomology spectrum.
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Third Try: Geisser-Hesselholt

THH of rings localizes: 7. THH(R[S™']) = 7. THH(R) ® R[S™"].

. =
In other words, for a ring 7. THH(R) is a quasi-coherent sheaf

Define THH(X) as the Cech spectrum of an affine open cover, or as
the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.
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Third Try: Geisser-Hesselholt

THH of rings localizes: 7. THH(R[S™']) = 7. THH(R) ® R[S™"].
In other words, for a ring 7. THH(R) is a quasi-coherent sheaf

Define THH(X) as the Cech spectrum of an affine open cover, or as
the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of THH(X on Y') for localization sequence.
N ————

23/30
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THH of Schemes

Construction for HH: Keller

Force localization to hold:

Setup: S a DG-category, R a subcategory.
E.g., S a category of complexes, R the acyclics.
Define: HH(S, R) as the cofiber of Hochschild-Mitchell constructions

HH(S, R) = Cofiber(HH(R) — HH(S))

(Definition actually due to Kassel.)

Keller then proves (roughly) that a map (S. &) — (S’ . R’) that induces
an equivalence on triangulated quotients induces an equivalence on
HH. o
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Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).
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Our Approach: Concepts

Work with spectral categories and use the Hachschild-Mitchell
complex (actuall ogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
7o of the mapping spectra, or graded homotopy category defined by .,
of the mapping spectra.
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Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
7o of the mapping spectra, or graded homotopy category defined by .,
of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category
whose homotopy category is triangulated.
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Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell
complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by
7o of the mapping spectra, or graded homotopy category defined by .,
of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category
whose homotopy category is triangulated.

Work of{Sh@elehows that we can enhance a DG-category into a
spectral category.
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THH of Schemes

DK-Invariance

Basic kind of equivalence of spectral categories: Dwyer-Kan ‘]
equivalence. -
————

A DK-equivalence of spectral categories is a spectral functor that is a

weak equivalence on mapping spectra and an equivalence on the
homotopy category.
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THH of Schemes
DK-Invariance

Basic kind of equivalence of spectral categories: Dwyer-Kan
equivalence.

A DK-equivalence of spectral categories is a spectral functor that is a
weak equivalence on mapping spectra and an equivalence on the
homotopy category.

Theorem

A DK-equivalence of spectral categories induces a weak equivalence
of this THH.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 26/30



THH of Schemes

Morita Invariance / Cofinality

Up to DK-equivalence any (small) spectral category embeds in a’1

pretriangulated spectral cateqory.

We use this to simplify statements
\

LetQ c(C)be full subcategories of the pretriangulated spectral
category,D with the objects o@contained in the thick subcategory

generated by the objects of C (in the triangulated category moD). Then
THH(C) — THH(C')

—

is a weak equivalence.
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THH of Schemes
Localization Theorem

Let A c Band A’ c B’ be inclusions of full spectral categories and
assume that they are all pretriangulated. Let f: B — B’ be a spectral
functor that restricts to A — A'.

Theorem (Abstract localization theorem)

If the induced map of triangulated quotients is an equivalence then the
map of cofibers

Cofiber(THH(A) — THH(B)) — Cofiber( THH(A') — THH(B'))

e ———————— —— —_—
is an equivalence.

M.A.Mandell (IU) Localization Sequences in THH and TC November 2008 28/30



THH of Schemes
Consegences

We can use a spectral model of the derived category of perfect
complexes on X to define THH(X)
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THH of Schemes
Consegences

We can use a spectral model of the derived category of perfect
complexes on X to define THH(X)

We can use the full subcategory of U-acyclics to define THH(X on Y)
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THH of Schemes
Consegences

We can use a spectral model of the derived category of perfect
complexes on X to define THH(X)

We can use the full subcategory of U-acyclics to define THH(X on Y)

Theorem (Localization for open subschemes)
There is a cofibration sequence of spectra

THH(X on Y) — THH(X) — THH(U)
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THH of Schemes
Consegences

We can use a spectral model of the derived category of perfect
complexes on X to define THH(X)

We can use the full subcategory of U-acyclics to define THH(X on Y)

Theorem (Localization for open subschemes)
There is a cofibration sequence of spectra

THH(X on Y) — THH(X) — THH(U)

Theorem (Mayer-Vietoris)
There is a cofibration sequence of spectra

THH(U N V) — THH(U) v THH(V) — THH(U U V)
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THH of Schemes
Concluding remarks

In the case of a quasi-projective scheme (or more generally a scheme
with an ample family of line bundles), the bounded derived category is
precisely the thick subcategory generated by the vector bundles.

The exact category of vector bundles, made into a spectral category, is
the connective cover of the (full subcategory) spectral category we us
above. Algebraic-geometric remarks aside, the difference between the
last approach above and the first two approaches is using the full
non-connective mapping spectra.

It turns out that for a connective ring spectrum R, forming the specitral
category using the correct non-connective mapping spectra gives the
same THH as the connective-cover spectral category. But this is
another paper and another talk. . . wtr i~ b
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