Localization Sequences in THH and TC

Michael A. Mandell

Indiana University

Topology Seminar
March 16, 2009
Localization Sequences in THH and TC

- Joint work with Andrew Blumberg
Overview

Localization Sequences in THH and TC

- Joint work with Andrew Blumberg
Localization Sequences in THH and TC

- Joint work with Andrew Blumberg

Goal: Prove the analogue of the Thomason-Trobaugh K-theory Mayer-Vietoris and localization theorems in THH and TC
Localization Sequences in THH and TC

- Joint work with Andrew Blumberg

Goal: Prove the analogue of the Thomason-Trobaugh K-theory Mayer-Vietoris and localization theorems in THH and TC

Strategy: Prove the analogue of Keller’s Hochschild homology and cyclic homology localization theorems for THH and TC
Overview

Localization Sequences in THH and TC

- Joint work with Andrew Blumberg

Goal: Prove the analogue of the Thomason-Trobaugh K-theory Mayer-Vietoris and localization theorems in THH and TC

Strategy: Prove the analogue of Keller’s Hochschild homology and cyclic homology localization theorems for THH and TC

Recurring theme: connective vs. non-connective ring spectra
Overview

Localization Sequences in THH and TC

- Joint work with Andrew Blumberg

Goal: Prove the analogue of the Thomason-Trobaugh K-theory Mayer-Vietoris and localization theorems in THH and TC

Strategy: Prove the analogue of Keller’s Hochschild homology and cyclic homology localization theorems for THH and TC

Ocurring theme: connective vs. non-connective ring spectra
Cortiñas, Haesemeyer, Schlichting, and Weibel: K-theory and singularities. Proved:

- Weibel conjecture: $K_{-n}X = 0$ for $n > \dim(X)$
- Vorst conjecture: X is regular if and only if $K_{\dim(X)+1}X \to K_{\dim(X)+1}(X \times \mathbb{A}^r)$ is an isomorphism for all $r > 0$.

Over fields of characteristic zero using Mayer Vietoris and localization in negative cyclic homology.

Geisser and Hesselholt proved Weibel conjecture in characteristic p using corresponding TC results (assuming strong resolution of singularities).
Motivation

Cortiñas, Haesemeyer, Schlichting, and Weibel: K-theory and singularities. Proved:

- **Weibel conjecture**: $K_{-n}X = 0$ for $n > \dim(X)$
- **Vorst conjecture**: X is regular if and only if $K_{\dim(X)+1}X \to K_{\dim(X)+1}(X \times \mathbb{A}^r)$ is an isomorphism for all $r > 0$.

Over fields of characteristic zero using Mayer Vietoris and localization in negative cyclic homology.

Geisser and Hesselholt proved Weibel conjecture in characteristic p using corresponding TC results (assuming strong resolution of singularities).
Motivation

Cortiñas, Haesemeyer, Schlichting, and Weibel:

\(K \)-theory and singularities. Proved:

- **Weibel conjecture**: \(K_{-n}X = 0 \) for \(n > \dim(X) \)

- **Vorst conjecture**: \(X \) is regular if and only if
 \[K_{\dim(X)+1}X \to K_{\dim(X)+1}(X \times \mathbb{A}^r) \]
 is an isomorphism for all \(r > 0 \).

Over fields of characteristic zero using Mayer Vietoris and localization in negative cyclic homology.

Geisser and Hesselholt proved Weibel conjecture in characteristic \(p \) using corresponding \(TC \) results (assuming strong resolution of singularities).
Hochschild Homology

Cyclic bar construction

$$N^c_y R = \underbrace{R \otimes \cdots \otimes R \otimes R}_{q \text{ factors}}$$

$$R \otimes \cdots \otimes R$$

$$R$$

$$HH_* R$$ is the homology of the resulting chain complex
Cyclic bar construction

\[N^c_y HR = \underbrace{HR \wedge \cdots \wedge HR}^{q \text{ factors}} \wedge HR \]

\[HR \wedge \cdots \wedge HR \wedge HR \]

THH(\(R\)) is the resulting spectrum
Morita Invariance

Both HH and THH have Morita invariance:

$$HH(R) \simeq HH(M_nR)$$
$$THH(R) \simeq THH(M_nR)$$

\implies Dennis and cyclotomic trace maps
Dennis Trace / Cyclotomic Trace

Map $BGL_n R \to B^{cy} GL_n R$:

$$B_q(GL_n R) = \underbrace{GL_n R \times \cdots \times GL_n R}_{q \text{ factors}}$$

$$B_q^{cy}(GL_n R) = \underbrace{GL_n R \times \cdots \times GL_n R \times GL_n R}_{q \text{ factors}}$$

by $(g_1 | \cdots | g_q) \mapsto (g_1 | \cdots | g_q)g_q^{-1} \cdots g_1^{-1}$.

Map $B^{cy} GL_n R \to N^{cy}(M_n R)$ or to $N^{cy}_q(HM_n R)$.

$$N_q^{cy}(M_n R) = \underbrace{M_n R \otimes \cdots \otimes M_n R \otimes M_n R}_{q \text{ factors}}$$

Fit together to a map $KR = (\coprod BGL_n R)^+ \to THH(R) \to HH(R)$.
Dennis Trace / Cyclotomic Trace

Map $BGL_n R \rightarrow B^c_y GL_n R$:

$$B_q(GL_n R) = \underbrace{GL_n R \times \cdots \times GL_n R}_{q \text{ factors}}$$

$$B_q^{c_y}(GL_n R) = \underbrace{GL_n R \times \cdots \times GL_n R \times GL_n R}_{q \text{ factors}}$$

by $(g_1 | \cdots | g_q) \mapsto (g_1 | \cdots | g_q)g_q^{-1} \cdots g_1^{-1}$.

Map $B^{c_y} GL_n R \rightarrow N^{c_y}(M_n R)$ or to $N_q^{c_y}(HM_n R)$.

$$N_q^{c_y}(M_n R) = \underbrace{M_n R \otimes \cdots \otimes M_n R \otimes M_n R}_{q \text{ factors}}$$

Fit together to a map $KR = (\coprod BGL_n R)^{+} \rightarrow THH(R) \rightarrow HH(R)$.
Dennis Trace / Cyclotomic Trace

Map $BGL_n R \rightarrow B^{cy} GL_n R$:

$$B_q(\text{GL}_n R) = \underbrace{\text{GL}_n R \times \cdots \times \text{GL}_n R}_{q \text{ factors}}$$

$$B_q^{\text{cy}}(\text{GL}_n R) = \underbrace{\text{GL}_n R \times \cdots \times \text{GL}_n R \times \text{GL}_n R}_{q \text{ factors}}$$

by $(g_1 | \cdots | g_q) \mapsto (g_1 | \cdots | g_q) g_q^{-1} \cdots g_1^{-1}$.

Map $B^{cy} GL_n R \rightarrow N^{cy}(M_n R)$ or to $N_q^{cy}(HM_n R)$.

$$N_q^{cy}(M_n R) = \underbrace{M_n R \otimes \cdots \otimes M_n R \otimes M_n R}_{q \text{ factors}}$$

Fit together to a map $KR = (\coprod BGL_n R)^+ \rightarrow THH(R) \rightarrow HH(R)$.
Why THH?

- Relatively easy to compute
- Stabilization of K-theory [Dundas-McCarthy]

But...
Why THH?

- Relatively easy to compute
- Stabilization of K-theory [Dundas-McCarthy]

But...
Why THH?

- Relatively easy to compute
- Stabilization of K-theory [Dundas-McCarthy]

But...
Why THH?

- Relatively easy to compute
- Stabilization of K-theory [Dundas-McCarthy]

But... Not really that close to K-theory
Why THH?

- Relatively easy to compute
- Stabilization of K-theory [Dundas-McCarthy]

But…

Not really that close to K-theory

\Rightarrow HN and TC
Negative Cyclic and TC

- Built from HH and THH
- Still reasonably computable
- Goodwillie: Relative HN is rationally equivalent to relative K-theory (for surjective maps with nilpotent kernel).
- McCarthy: Relative TC is p-equivalent to relative K-theory (for surjective maps with nilpotent kernel).
Negative Cyclic and TC

- Built from HH and THH
- Still reasonably computable
- Goodwillie: Relative HN is rationally equivalent to relative K-theory (for surjective maps with nilpotent kernel).
- McCarthy: Relative TC is p-equivalent to relative K-theory (for surjective maps with nilpotent kernel).
Negative Cyclic and TC

- Built from HH and THH
- Still reasonably computable

Goodwillie: Relative HN is rationally equivalent to relative K-theory (for surjective maps with nilpotent kernel).

McCarthy: Relative TC is p-equivalent to relative K-theory (for surjective maps with nilpotent kernel).
Negative Cyclic and TC

- Built from HH and THH
- Still reasonably computable
- Goodwillie: Relative HN is rationally equivalent to relative K-theory (for surjective maps with nilpotent kernel).
- McCarthy: Relative TC is p-equivalent to relative K-theory (for surjective maps with nilpotent kernel).

Homotopy cartesian square

$$\begin{array}{ccc}
K(R)_\mathbb{Q} & \rightarrow & K(R')_\mathbb{Q} \\
\downarrow & & \downarrow \\
HN(R \otimes \mathbb{Q}) & \rightarrow & HN(R' \otimes \mathbb{Q})
\end{array}$$

For $R \rightarrow R'$

Surjective map with nilpotent kernel.
Negative Cyclic and TC

- Built from HH and THH
- Still reasonably computable
- Goodwillie: Relative HN is rationally equivalent to relative K-theory (for surjective maps with nilpotent kernel).
- McCarthy: Relative TC is p-equivalent to relative K-theory (for surjective maps with nilpotent kernel).

Homotopy cartesian square

$$
\begin{align*}
K(R) \otimes \mathbb{Q} & \longrightarrow K(R') \otimes \mathbb{Q} \\
\downarrow & \downarrow \\
HN(R \otimes \mathbb{Q}) & \longrightarrow HN(R' \otimes \mathbb{Q})
\end{align*}
$$

$$
\begin{align*}
K(R)^\wedge & \longrightarrow K(R')^\wedge \\
\downarrow & \downarrow \\
TC(R, p) & \longrightarrow TC(R', p)
\end{align*}
$$
Negative Cyclic and TC

- Built from HH and THH
- Still reasonably computable
- Goodwillie: Relative HN is rationally equivalent to relative K-theory (for surjective maps with nilpotent kernel).
- McCarthy: Relative TC is p-equivalent to relative K-theory (for surjective maps with nilpotent kernel).
- Dundas: Generalized p-equivalence to maps of ring spectra.

Homotopy cartesian square

\[
\begin{array}{ccc}
K(R) & \rightarrow & K(R') \\
\downarrow & & \downarrow \\
HN(R \otimes \mathbb{Q}) & \rightarrow & HN(R' \otimes \mathbb{Q}) \\
\end{array}
\]

\[
\begin{array}{ccc}
K(R) & \rightarrow & K(R') \\
\downarrow & & \downarrow \\
TC(R, p) & \rightarrow & TC(R', p) \\
\end{array}
\]
Quillen’s K-Theory of Schemes

$K(X) = K$-theory of exact category of vector bundles on X.

Algebraic-geometric Remarks:

- Definitively correct for quasi-projective varieties.
- “Obviously” not correct for varieties that do not have enough vector bundles.

- Formulation of perfect complex: A complex of \mathcal{O}_X-modules that is locally quasi-isomorphic to bounded complex of vector bundles.
- Bounded derived category = full subcategory of derived category of \mathcal{O}_X-modules consisting of the perfect complexes.
- Bounded derived category is also the full subcategory of compact objects. [An alternative characterization of perfect complexes.]
Quillen’s K-Theory of Schemes

$K(X) = K$-theory of exact category of vector bundles on X.

Algebraic-geometric Remarks:

- Definitely correct for quasi-projective varieties.
- “Obviously” not correct for varieties that do not have enough vector bundles. [SGA6 IV§2] K_0 is K_{naif}.
- Formulation of perfect complex: A complex of \mathcal{O}_X-modules that is locally quasi-isomorphic to bounded complex of vector bundles.
- Bounded derived category = full subcategory of derived category of \mathcal{O}_X-modules consisting of the perfect complexes.
- Bounded derived category is also the full subcategory of compact objects. [An alternative characterization of perfect complexes.]
Quillen’s K-Theory of Schemes

$K(X) = K$-theory of exact category of vector bundles on X.

Algebraic-geometric Remarks:

- Definitively correct for quasi-projective varieties.
- “Obviously” not correct for varieties that do not have enough vector bundles. [SGA6 IV§2] K_0 is K^\bullet_{naif}.
- Formulation of perfect complex: A complex of \mathcal{O}_X-modules that is locally quasi-isomorphic to bounded complex of vector bundles.
- Bounded derived category $= \text{full subcategory of derived category of } \mathcal{O}_X\text{-modules consisting of the perfect complexes.}$

- Bounded derived category is also the full subcategory of compact objects. [An alternative characterization of perfect complexes.]
Quillen’s K-Theory of Schemes

$$K(X) = K\text{-theory of exact category of vector bundles on } X.$$

Algebraic-geometric Remarks:

- Definitely correct for quasi-projective varieties.
- “Obviously” not correct for varieties that do not have enough vector bundles. [SGA6 IV§2] K_0 is $K_{\text{naïf}}$.
- Formulation of perfect complex: A complex of \mathcal{O}_X-modules that is locally quasi-isomorphic to bounded complex of vector bundles.
- Bounded derived category = full subcategory of derived category of \mathcal{O}_X-modules consisting of the perfect complexes.
- Bounded derived category is also the full subcategory of compact objects. [An alternative characterization of perfect complexes.]
Thomason’s K-Theory of Schemes

Basic Outline

- Apply Waldhausen’s construction, which generalizes Quillen’s from exact categories to categories with cofibrations and weak equivalences.

- Work with Complicial biWaldhausen categories and functors: Subcategories of categories of complexes on abelian categories (with restrictions); functors induced by additive functors on the underlying abelian categories.

This gives a K-theory of derived categories (of sorts):

Theorem. If a complicial functor between complicial biWaldhausen categories induces an equivalence of derived categories, it induces an equivalence of K-theory.
Thomason’s K-Theory of Schemes

Basic Outline

- Apply Waldhausen’s construction, which generalizes Quillen’s from exact categories to categories with cofibrations and weak equivalences
- Work with Complicial biWaldhausen categories and functors: Subcategories of categories of complexes on abelian categories (with restrictions); functors induced by additive functors on the underlying abelian categories.

This gives a K-theory of derived categories (of sorts):

Theorem. If a complicial functor between complicial biWaldhausen categories induces an equivalence of derived categories, it induces an equivalence of K-theory.
Thomason’s K-Theory of Schemes

Consequence: Any subcategory (with restrictions) of perfect complexes of \mathcal{O}_X-modules whose derived category is the bounded derived category produces the same K-theory.

\[K(X) = K\text{-theory of the category of perfect complexes on } X. \]

Variant: For Y a closed subset of X

\[K(X \text{ on } Y) = K\text{-theory of the category of perfect complexes on } X \text{ that are supported on } Y \text{ (acyclic off } Y). \]
Consequence: Any subcategory (with restrictions) of perfect complexes of \mathcal{O}_X-modules whose derived category is the bounded derived category produces the same K-theory.

$$K(X) = K\text{-theory of the category of perfect complexes on } X.$$

Variant: For Y a closed subset of X

$$K(X \text{ on } Y) = K\text{-theory of the category of perfect complexes on } X \text{ that are supported on } Y \text{ (acyclic off } Y).$$
Thomason’s K-Theory of Schemes

Consequence: Any subcategory (with restrictions) of perfect complexes of \mathcal{O}_X-modules whose derived category is the bounded derived category produces the same K-theory.

$$K(X) = K\text{-theory of the category of perfect complexes on } X.$$

Variant: For Y a closed subset of X

$$K(X \text{ on } Y) = K\text{-theory of the category of perfect complexes on } X \text{ that are supported on } Y \text{ (acyclic off } Y).$$
Thomason Trobaugh Localization Theorem

Localization Theorem. Let $U \subset X$ be open, $Y = X - U$. There is a long exact sequence

\[\cdots \to K_n(X \text{ on } Y) \to K_n(X) \to K_n(U) \to \cdots \]

\[\cdots \to K_0(X \text{ on } Y) \to K_0(X) \to K_0(U) \to \cdots \]

Mayer-Vietoris Theorem. Let $U, V \subset X$ with $X = U \cup V$. There is a long exact sequence

\[\cdots \to K_n(U \cap V) \to K_n(U) \oplus K_n(V) \to K_n(X) \to \cdots \]

\[\cdots \to K_0(U \cap V) \to K_0(U) \oplus K_0(V) \to K_0(X) \to \cdots \]
Thomason Trobaugh Localization Theorem

Localization Theorem. Let $U \subset X$ be open, $Y = X - U$. There is a long exact sequence

$$
\cdots \to K_n(X \text{ on } Y) \to K_n(X) \to K_n(U) \to \cdots
$$

Mayer-Vietoris Theorem. Let $U, V \subset X$ with $X = U \cup V$. There is a long exact sequence

$$
\cdots \to K_n(U \cap V) \to K_n(U) \oplus K_n(V) \to K_n(X) \to \cdots
$$

$$
\cdots \to K_0(U \cap V) \to K_0(U) \oplus K_0(V) \to K_0(X) \to \cdots
$$
Proof

Waldhausen: Fibration sequences for “weaker” weak equivalences.

A category with a weak equivalences \(w \), and another collection of weak equivalences \(v \) with \(v \subset w \).

\(\mathcal{C}^w \) = the subcategory of \(\mathcal{C} \) of objects \(w \)-equivalent to the trivial object.

Theorem. (Waldhausen localization sequence)
The following square is homotopy cartesian:

\[
\begin{array}{ccc}
K(\mathcal{C}^w, v) & \longrightarrow & K(\mathcal{C}^w, w) \\
\downarrow & & \downarrow \\
K(\mathcal{C}, v) & \longrightarrow & K(\mathcal{C}, w)
\end{array}
\]

\(K(\mathcal{C}^w, w) \) is trivial.
Proof

Waldhausen: Fibration sequences for “weaker” weak equivalences.

\(\mathcal{C} \) category with a weak equivalences \(w \), and another collection of weak equivalences \(v \) with \(v \subset w \).

\(\mathcal{C}^w \) = the subcategory of \(\mathcal{C} \) of objects \(w \)-equivalent to the trivial object.

Theorem. (Waldhausen localization sequence)
The following square is homotopy cartesian:

\[
\begin{array}{ccc}
K(\mathcal{C}^w, v) & \longrightarrow & K(\mathcal{C}^w, w) \\
\downarrow & & \downarrow \\
K(\mathcal{C}, v) & \longrightarrow & K(\mathcal{C}, w)
\end{array}
\]

\(K(\mathcal{C}^w, w) \) is trivial.
Proof

Waldhausen: Fibration sequences for “weaker” weak equivalences.

\(\mathcal{C} \) category with a weak equivalences \(w \), and another collection of weak equivalences \(v \) with \(v \subset w \).

\(\mathcal{C}^w \) = the subcategory of \(\mathcal{C} \) of objects \(w \)-equivalent to the trivial object.

Theorem. (Waldhausen localization sequence)
The following square is homotopy cartesian:

\[
\begin{array}{ccc}
K(\mathcal{C}^w, v) & \rightarrow & K(\mathcal{C}^w, w) \\
\downarrow & & \downarrow \\
K(\mathcal{C}, v) & \rightarrow & K(\mathcal{C}, w)
\end{array}
\]

\(K(\mathcal{C}^w, w) \) is trivial.
Proof

Take $\mathcal{C} = \text{Perfect complexes on } X$

$\nu = \text{Quasi-isomorphisms}$

$\omega = \text{Maps that are quasi-isomorphisms on } U$

$\nu \subset \omega$

$\mathcal{C}^\omega = \text{Perfect complexes supported on } Y.$

Thomason and Trobaugh prove that the derived category $\mathcal{D}(\mathcal{C}, \omega)$ is cofinal in the bounded derived category of U.

Proof

Take $\mathcal{C} = \text{Perfect complexes on } X$

$\nu = \text{Quasi-isomorphisms}$

$\omega = \text{Maps that are quasi-isomorphisms on } U$

$\nu \subset \omega$

$\mathcal{C}^w \text{ = Perfect complexes supported on } Y.$

Thomason and Trobaugh prove that the derived category $D(\mathcal{C}, \omega)$ is cofinal in the bounded derived category of U.
Proof

Take $\mathcal{C} = \text{Perfect complexes on } X$

$\nu = \text{Quasi-isomorphisms}$

$\omega = \text{Maps that are quasi-isomorphisms on } U$

$\nu \subset \omega$

$\mathcal{C}^\omega = \text{Perfect complexes supported on } Y.$

Thomason and Trobaugh prove that the derived category $\mathcal{D}(\mathcal{C}, \omega)$ is cofinal in the bounded derived category of U.
Proof

Take $C = \text{Perfect complexes on } X$

$\nu = \text{Quasi-isomorphisms}$

$w = \text{Maps that are quasi-isomorphisms on } U$

$\nu \subset w$

$C^w = \text{Perfect complexes supported on } Y.$

Thomason and Trobaugh prove that the derived category $D(C, w)$ is cofinal in the bounded derived category of U.
Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects S^c and is closed under small coproducts and assume S^c is small.

Let \mathcal{R} be localizing subcategory gen. by some set of compact objects.

Let \mathcal{T} be the triangulated quotient S/\mathcal{R}.

This means \mathcal{T} is the localization of S with respect to the maps whose cofibers are in \mathcal{R}.

Theorem

- The compact objects S^c of S map to compact objects of \mathcal{T}.
- The induced functor $S^c/\mathcal{R}^c \to \mathcal{T}^c$ is fully faithful and \mathcal{T}^c is the thick subcategory generated by its image.

T-T localization set-up can be reformulated in terms of quotients of triangulated categories.
Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects S^c and is closed under small coproducts and assume S^c is small.

Let \mathcal{R} be localizing subcategory gen. by some set of compact objects.

Let \mathcal{T} be the triangulated quotient S/\mathcal{R}.

This means \mathcal{T} is the localization of S with respect to the maps whose cofibers are in \mathcal{R}.

Theorem

- The compact objects S^c of S map to compact objects of \mathcal{T}.
- The induced functor $S^c/\mathcal{R}^c \to \mathcal{T}^c$ is fully faithful and \mathcal{T}^c is the thick subcategory generated by its image.

T-T localization set-up can be reformulated in terms of quotients of triangulated categories.
Neeman’s Abstract Reformulation

Let S be a triangulated category generated by its compact objects S^c and is closed under small coproducts and assume S^c is small.

Let \mathcal{R} be a localizing subcategory generated by some set of compact objects.

Let \mathcal{T} be the triangulated quotient S/\mathcal{R}.

This means \mathcal{T} is the localization of S with respect to the maps whose cofibers are in \mathcal{R}.

Theorem

- The compact objects S^c of S map to compact objects of \mathcal{T}.
- The induced functor $S^c/\mathcal{R}^c \rightarrow \mathcal{T}^c$ is fully faithful and \mathcal{T}^c is the thick subcategory generated by its image.

T-T localization set-up can be reformulated in terms of quotients of triangulated categories.
Remark on Cofinality

Cofinality implies iso on K_n for $n > 0$ but only an injection on K_0. This is why the localization sequence is generally not surjective on K_0:

$$
\cdots \to K_n(X \text{ on } Y) \to K_n(X) \to K_n(U) \to \cdots
$$

$$
\cdots \to K_0(X \text{ on } Y) \to K_0(X) \to K_0(U)
$$

The sequence actually continues with the Bass negative K-groups:

$$
\cdots \to K_0(X \text{ on } Y) \to K_0(X) \to K_0(U) \to K_{-1}(X \text{ on } Y) \to K_{-1}(X) \to \cdots
$$

These groups are defined inductively by

$$
K_{-n-1}X = \text{Coker } (K_{-n}(X \times \text{Spec } \mathbb{Z}[x]) \oplus K_{-n}(X \times \text{Spec } \mathbb{Z}[x^{-1}])
$$

$$
\to K_{-n}(X \times \text{Spec } \mathbb{Z}[x, x^{-1}]))
$$
Remark on Cofinality

Cofinality implies iso on K_n for $n > 0$ but only an injection on K_0. This is why the localization sequence is generally not surjective on K_0:

$$\cdots \rightarrow K_n(X \text{ on } Y) \rightarrow K_n(X) \rightarrow K_n(U) \rightarrow \cdots$$

$$\cdots \rightarrow K_0(X \text{ on } Y) \rightarrow K_0(X) \rightarrow K_0(U)$$

The sequence actually continues with the Bass negative K-groups:

$$\cdots \rightarrow K_0(X \text{ on } Y) \rightarrow K_0(X) \rightarrow K_0(U) \rightarrow K_{-1}(X \text{ on } Y) \rightarrow K_{-1}(X) \rightarrow \cdots$$

These groups are defined inductively by

$$K_{-n-1}X = \text{Coker} \left(K_{-n}(X \times \text{Spec }\mathbb{Z}[x]) \oplus K_{-n}(X \times \text{Spec }\mathbb{Z}[x^{-1}]) \right)$$

$$\rightarrow K_{-n}(X \times \text{Spec }\mathbb{Z}[x, x^{-1}])$$
Remark on Cofinality

Cofinality implies iso on K_n for $n > 0$ but only an injection on K_0. This is why the localization sequence is generally not surjective on K_0:

$$
\cdots \rightarrow K_n(X \text{ on } Y) \rightarrow K_n(X) \rightarrow K_n(U) \rightarrow \cdots
$$

$$
\cdots \rightarrow K_0(X \text{ on } Y) \rightarrow K_0(X) \rightarrow K_0(U)
$$

The sequence actually continues with the Bass negative K-groups:

$$
\cdots \rightarrow K_0(X \text{ on } Y) \rightarrow K_0(X) \rightarrow K_0(U) \rightarrow K_{-1}(X \text{ on } Y) \rightarrow K_{-1}(X) \rightarrow \cdots
$$

These groups are defined inductively by

$$
K_{-n-1}X = \text{Coker } (K_{-n}(X \times \text{Spec } \mathbb{Z}[x]) \oplus K_{-n}(X \times \text{Spec } \mathbb{Z}[x^{-1}])
$$

$$
\rightarrow K_{-n}(X \times \text{Spec } \mathbb{Z}[x, x^{-1}])
$$
Thomason and Trobaugh construct a non-connective K-theory spectrum $K^B X$ essentially by doing Bass’ algebraic construction on the spectrum level.

In terms of K^B, the localization theorem asserts a cofiber sequence of spectra

$$K^B(X \text{ on } Y) \to K^B(X) \to K^B(U)$$

and the Mayer-Vietoris theorem asserts a cofiber sequence of spectra

$$K^B(U \cap V) \to K^B(U) \vee K^B(V) \to K^B(U \cup V)$$
Thomason and Trobaugh construct a non-connective K-theory spectrum $K^B X$ essentially by doing Bass’ algebraic construction on the spectrum level.

In terms of K^B, the localization theorem asserts a cofiber sequence of spectra

$$K^B(X \text{ on } Y) \to K^B(X) \to K^B(U)$$

and the Mayer-Vietoris theorem asserts a cofiber sequence of spectra

$$K^B(U \cap V) \to K^B(U) \lor K^B(V) \to K^B(U \cup V)$$
Thomason and Trobaugh construct a non-connective K-theory spectrum $K^B X$ essentially by doing Bass’ algebraic construction on the spectrum level.

In terms of K^B, the localization theorem asserts a cofiber sequence of spectra

$$K^B(X \text{ on } Y) \to K^B(X) \to K^B(U)$$

and the Mayer-Vietoris theorem asserts a cofiber sequence of spectra

$$K^B(U \cap V) \to K^B(U) \lor K^B(V) \to K^B(U \cup V)$$
First Try: Hochschild-Mitchell construction

For an additive category \mathcal{C}

$$\mathcal{N}^{cy}_q \mathcal{C} = \bigoplus_{x_0, \ldots, x_q \in \mathcal{C}} \mathcal{C}(x_q, x_{q-1}) \otimes \cdots \otimes \mathcal{C}(x_1, x_0) \otimes \mathcal{C}(x_0, x_q)$$

Constructs $HH(\mathcal{C})$.

Using (bar construction) Eilenberg-Mac Lane spectra, we get a spectral category \mathcal{C}^S.

$$\mathcal{N}^{cy}_q \mathcal{C}^S = \bigvee_{x_0, \ldots, x_q \in \mathcal{C}} \mathcal{C}(x_q, x_{q-1}) \wedge \cdots \wedge \mathcal{C}(x_1, x_0) \wedge \mathcal{C}(x_0, x_q)$$

Constructs $THH(\mathcal{C})$.

We could apply this to the category of vector bundles.
First Try: Hochschild-Mitchell construction

For an additive category \mathcal{C}

$$\mathcal{N}^c_q \mathcal{C} = \bigoplus_{x_0, \ldots, x_q \in \mathcal{C}} \mathcal{C}(x_q, x_{q-1}) \otimes \cdots \otimes \mathcal{C}(x_1, x_0) \otimes \mathcal{C}(x_0, x_q)$$

Constructs $\text{HH}^* (\mathcal{C})$.

Using (bar construction) Eilenberg-MacLane spectra, we get a spectral category \mathcal{C}^S

$$\mathcal{N}^c_q \mathcal{C}^S = \bigvee_{x_0, \ldots, x_q \in \mathcal{C}} \mathcal{C}^S(x_q, x_{q-1}) \wedge \cdots \wedge \mathcal{C}^S(x_1, x_0) \wedge \mathcal{C}^S(x_0, x_q)$$

Constructs $\text{THH}^* (\mathcal{C})$.

We could apply this to the category of vector bundles.
First Try: Hochschild-Mitchell construction

For an additive category \mathcal{C}

$$N_q^{cy} \mathcal{C} = \bigoplus_{x_0,\ldots,x_q \in \mathcal{C}} \mathcal{C}(x_q, x_{q-1}) \otimes \cdots \otimes \mathcal{C}(x_1, x_0) \otimes \mathcal{C}(x_0, x_q)$$

Constructs $HH(\mathcal{C})$.

Using (bar construction) Eilenberg-Mac Lane spectra, we get a spectral category \mathcal{C}^S.

$$N_q^{cy} \mathcal{C}^S = \bigvee_{x_0,\ldots,x_q \in \mathcal{C}} \mathcal{C}(x_q, x_{q-1}) \wedge \cdots \wedge \mathcal{C}(x_1, x_0) \wedge \mathcal{C}(x_0, x_q)$$

Constructs $THH(\mathcal{C})$.

We could apply this to the category of vector bundles.
Invariance problems of Hochschild-Mitchell construction: Treats an exact category \mathcal{C} as an additive category. (Only sees split exact sequences.)

Solution:
Mix Waldhausen’s $S\bullet$-construction in with the Hochschild-Mitchell construction.

Nice consequence:
Can reformulate cyclotomic trace as inclusion of objects in Hochschild-Mitchell construction.
Second Try: Dundas-McCarthy

Invariance problems of Hochschild-Mitchell construction: Treats an exact category \mathcal{C} as an additive category. (Only sees split exact sequences.)

Solution:
Mix Waldhausen’s $S\bullet$-construction in with the Hochschild-Mitchell construction.

Nice consequence:
Can reformulate cyclotomic trace as inclusion of objects in Hochschild-Mitchell construction.
Invariance problems of Hochschild-Mitchell construction: Treats an exact category \mathcal{C} as an additive category. (Only sees split exact sequences.)

Solution:
Mix Waldhausen’s $S\bullet$-construction in with the Hochschild-Mitchell construction.

Nice consequence:
Can reformulate cyclotomic trace as inclusion of objects in Hochschild-Mitchell construction.
Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.

Example. Look at the projective (elliptic) curve

\[x_0 x_2^2 = x_1^3 - 3x_0^2 x_1 \]

This has an open cover by the affines

\[U = \{ x_0 \neq 0 \} = \text{Spec } \mathbb{Z}[x, y]/(y^2 = x^3 - 3x) \]
\[V = \{ x_2 \neq 0 \} = \text{Spec } \mathbb{Z}[u, v]/(u = v^3 - 3u^2 v) \]

for \(x = x_1/x_0, \ y = x_2/x_0, \ u = x_0/x_2, \ v = x_1/x_2 \)

Then \(U \cap V = \text{Spec } \mathbb{Z}[x, y, y^{-1}]/(y^2 = x^3 - 3x), \) but

\[\mathbb{Z}[x, y]/(y^2 = x^3 - 3x) \oplus \mathbb{Z}[u, v]/(u = v^3 - 3u^2 v) \]
\[\rightarrow \mathbb{Z}[x, y, y^{-1}]/(y^2 = x^3 - 3x) \]

is not surjective. (Here \(u \mapsto 1/y \) and \(v \mapsto x/y. \))
Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.

Example. Look at the projective (elliptic) curve

\[x_0 x_2^2 = x_1^3 - 3x_0^2 x_1 \]

This has an open cover by the affines

- \(U = \{ x_0 \neq 0 \} = \text{Spec } \mathbb{Z}[x, y]/(y^2 = x_1^3 - 3x_0^2 x_1) \)
- \(V = \{ x_2 \neq 0 \} = \text{Spec } \mathbb{Z}[u, v]/(u = v^3 - 3u^2 v) \)

for \(x = x_1/x_0, \ y = x_2/x_0, \ u = x_0/x_2, \ v = x_1/x_2 \)

Then \(U \cap V = \text{Spec } \mathbb{Z}[x, y, y^{-1}]/(y^2 = x_1^3 - 3x_0^2 x_1) \), but

\(\mathbb{Z}[x, y]/(y^2 = x_1^3 - 3x_0^2 x_1) \oplus \mathbb{Z}[u, v]/(u = v^3 - 3u^2 v) \)

\[\rightarrow \mathbb{Z}[x, y, y^{-1}]/(y^2 = x_1^3 - 3x_0^2 x_1) \]

is not surjective. (Here \(u \mapsto 1/y \) and \(v \mapsto x/y \).)
Mayer-Vietoris

The Dundas-McCarthy construction cannot satisfy Mayer-Vietoris.

Example. Look at the projective (elliptic) curve

\[x_0 x_2^2 = x_1^3 - 3 x_0^2 x_1 \]

This has an open cover by the affines

\[U = \{ x_0 \neq 0 \} = \text{Spec } \mathbb{Z}[x, y]/(y^2 = x^3 - 3x) \]
\[V = \{ x_2 \neq 0 \} = \text{Spec } \mathbb{Z}[u, v]/(u = v^3 - 3u^2 v) \]

for \(x = x_1/x_0, y = x_2/x_0, u = x_0/x_2, v = x_1/x_2 \)

Then \(U \cap V = \text{Spec } \mathbb{Z}[x, y, y^{-1}]/(y^2 = x^3 - 3x) \), but

\[\mathbb{Z}[x, y]/(y^2 = x^3 - 3x) \oplus \mathbb{Z}[u, v]/(u = v^3 - 3u^2 v) \]

\[\rightarrow \mathbb{Z}[x, y, y^{-1}]/(y^2 = x^3 - 3x) \]

is not surjective. (Here \(u \mapsto 1/y \) and \(v \mapsto x/y \).)
Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:

$$\text{Coker} \left(THH_0(R[x]) \oplus THH_0(R[x^{-1}]) \rightarrow THH_0(R[x, x^{-1}]) \right)$$

is always surjective. It is

$$R[x] \oplus R[x^{-1}] \rightarrow R[x, x^{-1}].$$

This problem has a different source. (Related to non-connective spectra in a different way.)
Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:

$$\text{Coker } (THH_0(R[x]) \oplus THH_0(R[x^{-1}]) \to THH_0(R[x, x^{-1}]))$$

is always surjective. It is

$$R[x] \oplus R[x^{-1}] \to R[x, x^{-1}].$$

This problem has a different source. (Related to non-connective spectra in a different way.)
Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:

$$\text{Coker } (\text{THH}_0(R[x]) \oplus \text{THH}_0(R[x^{-1}]) \to \text{THH}_0(R[x, x^{-1}]])$$

is always surjective. It is

$$R[x] \oplus R[x^{-1}] \to R[x, x^{-1}]$$.

This problem has a different source. (Related to non-connective spectra in a different way.)
Bass Construction

This is not related to the Bass construction.

No negative Bass THH groups for rings:

$$\text{Coker} \left(\text{THH}_0(R[x]) \oplus \text{THH}_0(R[x^{-1}]) \to \text{THH}_0(R[x, x^{-1}]) \right)$$

is always surjective. It is

$$R[x] \oplus R[x^{-1}] \to R[x, x^{-1}].$$

This problem has a different source. (Related to non-connective spectra in a different way.)
Third Try: Geisser-Hesselholt

THH of rings localizes: $\pi_* THH(R[S^{-1}]) = \pi_* THH(R) \otimes R[S^{-1}]$.

In other words, for a ring $\pi_* THH(R)$ is a quasi-coherent sheaf

Define $THH(X)$ as the Čech spectrum of an affine open cover, or as the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of $THH(X$ on Y) for localization sequence.
Third Try: Geisser-Hesselholt

THH of rings localizes: $\pi_* THH(R[S^{-1}]) = \pi_* THH(R) \otimes R[S^{-1}]$.

In other words, for a ring $\pi_* THH(R)$ is a quasi-coherent sheaf.

Define $THH(X)$ as the Čech spectrum of an affine open cover, or as the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of $THH(X$ on $Y)$ for localization sequence.
Third Try: Geisser-Hesselholt

THH of rings localizes: $\pi_* THH(R[S^{-1}]) = \pi_* THH(R) \otimes R[S^{-1}]$.

In other words, for a ring $\pi_* THH(R)$ is a quasi-coherent sheaf.

Define $THH(X)$ as the Čech spectrum of an affine open cover, or as the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of $THH(X \text{ on } Y)$ for localization sequence.
Third Try: Geisser-Hesselholt

\(\text{THH of rings localizes: } \pi_\ast \text{THH}(R[S^{-1}]) = \pi_\ast \text{THH}(R) \otimes R[S^{-1}]. \)

In other words, for a ring \(\pi_\ast \text{THH}(R) \) is a quasi-coherent sheaf

Define \(\text{THH}(X) \) as the Čech spectrum of an affine open cover, or as the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of \(\text{THH}(X \text{ on } Y) \) for localization sequence.
Third Try: Geisser-Hesselholt

\[THH \text{ of rings localizes: } \pi_* THH(R[S^{-1}]) = \pi_* THH(R) \otimes R[S^{-1}]. \]

In other words, for a ring \(\pi_* THH(R) \) is a quasi-coherent sheaf.

Define \(THH(X) \) as the Čech spectrum of an affine open cover, or as the hyper-cohomology spectrum.

Tautologically satisfies Mayer-Vietoris.

But no construction of \(THH(X \text{ on } Y) \) for localization sequence.
Construction for \(HH \): Keller

Force localization to hold:

Setup: \(S \) a DG-category, \(\mathcal{R} \) a subcategory.

E.g., \(S \) a category of complexes, \(\mathcal{R} \) the acyclics.

Define: \(HH(S, \mathcal{R}) \) as the cofiber of Hochschild-Mitchell constructions

\[
HH(S, \mathcal{R}) = \text{Cofiber}(HH(\mathcal{R}) \rightarrow HH(S))
\]

(Definition actually due to Kassel.)

Keller then proves (roughly) that a map \((S, \mathcal{R}) \rightarrow (S', \mathcal{R}')\) that induces an equivalence on triangulated quotients induces an equivalence on \(HH \).
Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell complex (actually, the analogue due to Bokstedt).

A spectral category has an associated \(\text{homotopy category} \) defined by \(\pi_0 \) of the mapping spectra, or graded homotopy category defined by \(\pi_* \) of the mapping spectra.

A \textit{pretriangulated} spectral category is (roughly) a spectral category whose homotopy category is triangulated.

General theory shows that we can enhance a DG-category into a spectral category.
Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell complex (actually, the analogue due to Bokstedt).

A spectral category has an associated *homotopy category* defined by π_0 of the mapping spectra, or graded homotopy category defined by π_* of the mapping spectra.

A *pretriangulated* spectral category is (roughly) a spectral category whose homotopy category is triangulated.

General theory shows that we can enhance a DG-category into a spectral category.
Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell complex (actually, the analogue due to Bokstedt).

A spectral category has an associated homotopy category defined by π_0 of the mapping spectra, or graded homotopy category defined by π_* of the mapping spectra.

A pretriangulated spectral category is (roughly) a spectral category whose homotopy category is triangulated.

General theory shows that we can enhance a DG-category into a spectral category.
Our Approach: Concepts

Work with spectral categories and use the Hochschild-Mitchell complex (actually, the analogue due to Bokstedt).

A spectral category has an associated *homotopy category* defined by π_0 of the mapping spectra, or graded homotopy category defined by π_* of the mapping spectra.

A *pretriangulated* spectral category is (roughly) a spectral category whose homotopy category is triangulated.

General theory shows that we can enhance a DG-category into a spectral category.
DK-Invariance

Basic kind of equivalence of spectral categories: Dwyer-Kan equivalence.

A DK-equivalence of spectral categories is a spectral functor that is a weak equivalence on mapping spectra and an equivalence on the homotopy category.

Theorem

A DK-equivalence of spectral categories induces a weak equivalence of this THH.
DK-Invariance

Basic kind of equivalence of spectral categories: Dwyer-Kan equivalence.

A DK-equivalence of spectral categories is a spectral functor that is a weak equivalence on mapping spectra and an equivalence on the homotopy category.

Theorem

A DK-equivalence of spectral categories induces a weak equivalence of this THH.
Morita Invariance / Cofinality

Up to DK-equivalence any (small) spectral category embeds in a pretriangulated spectral category.
We use this to simplify statements

Theorem

Let \(C \subseteq C' \) be full subcategories of the pretriangulated spectral category \(D \) with the objects of \(C' \) contained in the thick subcategory generated by the objects of \(C \) (in the triangulated category \(\pi_0 D \)). Then

\[
THH(C) \to THH(C')
\]

is a weak equivalence.
Localization Theorem

Let $A \subset B$ and $A' \subset B'$ be inclusions of full spectral categories and assume that they are all pretriangulated. Let $f : B \to B'$ be a spectral functor that restricts to $A \to A'$.

Theorem (Abstract localization theorem)

If the induced map of triangulated quotients is an equivalence then the map of cofibers

$$\text{Cofiber}(\text{THH}(A) \to \text{THH}(B)) \to \text{Cofiber}(\text{THH}(A') \to \text{THH}(B'))$$

is an equivalence.
Consequences

We can use a spectral model of the derived category of perfect complexes on X to define $THH(X)$.

We can use the full subcategory of U-acyclics to define $THH(X_{\text{on}} Y)$.

Theorem (Localization for open subschemes)

There is a cofibration sequence of spectra

$$THH(X_{\text{on}} Y) \rightarrow THH(X) \rightarrow THH(U)$$

Theorem (Mayer-Vietoris)

There is a cofibration sequence of spectra

$$THH(U \cap V) \rightarrow THH(U) \lor THH(V) \rightarrow THH(U \cup V)$$
Consequences

We can use a spectral model of the derived category of perfect complexes on X to define $THH(X)$.

We can use the full subcategory of U-acyclics to define $THH(X \text{ on } Y)$.

Theorem (Localization for open subschemes)

There is a cofibration sequence of spectra

$$THH(X \text{ on } Y) \to THH(X) \to THH(U)$$

Theorem (Mayer-Vietoris)

There is a cofibration sequence of spectra

$$THH(U \cap V) \to THH(U) \lor THH(V) \rightarrow THH(U \cup V)$$
Consequences

We can use a spectral model of the derived category of perfect complexes on \(X\) to define \(THH(X)\)

We can use the full subcategory of \(U\)-acyclics to define \(THH(X \text{ on } Y)\)

Theorem (Localization for open subschemes)

There is a cofibration sequence of spectra

\[
THH(X \text{ on } Y) \rightarrow THH(X) \rightarrow THH(U)
\]

Theorem (Mayer-Vietoris)

There is a cofibration sequence of spectra

\[
THH(U \cap V) \rightarrow THH(U) \lor THH(V) \rightarrow THH(U \cup V)
\]
Consequences

We can use a spectral model of the derived category of perfect complexes on X to define $THH(X)$.

We can use the full subcategory of U-acyclics to define $THH(X_{\text{on}} Y)$.

Theorem (Localization for open subschemes)

There is a cofibration sequence of spectra

$$THH(X_{\text{on}} Y) \to THH(X) \to THH(U)$$

Theorem (Mayer-Vietoris)

There is a cofibration sequence of spectra

$$THH(U \cap V) \to THH(U) \vee THH(V) \to THH(U \cup V)$$
Concluding remarks

In the case of a quasi-projective scheme (or more generally a scheme with an ample family of line bundles), the bounded derived category is precisely the thick subcategory generated by the vector bundles.

The exact category of vector bundles, made into a spectral category, is the connective cover of the (full subcategory) spectral category we use above. Algebraic-geometric remarks aside, the difference between the last approach above and the first two approaches is using the full non-connective mapping spectra.

It turns out that for a connective ring spectrum R, forming the spectral category using the correct non-connective mapping spectra gives the same THH as the connective-cover spectral category. But this is another paper and another talk...