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Outline

Basic definitions for simplicial complexes and the homology of
simplicial complexes.

1 Simplicial Complexes

What are they?
What do they model?
Simplicial approximation

2 Homology

What is homology?
What is a chain complex?
How do you get one?
Invariance theorem

Example: Compact Surfaces

Image credit: Oleg Alexandrov / Wikipedia

M.A.Mandell (IU) Simplicial Complexes and Homology Aug 2015 2 / 22



Outline

Basic definitions for simplicial complexes and the homology of
simplicial complexes.

1 Simplicial Complexes

What are they?
What do they model?
Simplicial approximation

2 Homology

What is homology?
What is a chain complex?
How do you get one?
Invariance theorem

Example: Compact Surfaces

Image credit: Oleg Alexandrov / Wikipedia

M.A.Mandell (IU) Simplicial Complexes and Homology Aug 2015 2 / 22



Outline

Basic definitions for simplicial complexes and the homology of
simplicial complexes.

1 Simplicial Complexes
What are they?
What do they model?
Simplicial approximation

2 Homology

What is homology?
What is a chain complex?
How do you get one?
Invariance theorem

Example: Compact Surfaces

Image credit: Oleg Alexandrov / Wikipedia

M.A.Mandell (IU) Simplicial Complexes and Homology Aug 2015 2 / 22



Outline

Basic definitions for simplicial complexes and the homology of
simplicial complexes.

1 Simplicial Complexes
What are they?
What do they model?
Simplicial approximation

2 Homology
What is homology?
What is a chain complex?
How do you get one?
Invariance theorem

Example: Compact Surfaces

Image credit: Oleg Alexandrov / Wikipedia

M.A.Mandell (IU) Simplicial Complexes and Homology Aug 2015 2 / 22



Outline

Basic definitions for simplicial complexes and the homology of
simplicial complexes.

1 Simplicial Complexes
What are they?
What do they model?
Simplicial approximation

2 Homology
What is homology?
What is a chain complex?
How do you get one?
Invariance theorem

Example: Compact Surfaces

Image credit: Oleg Alexandrov / Wikipedia

M.A.Mandell (IU) Simplicial Complexes and Homology Aug 2015 2 / 22



Introduction to Simplicial Complexes

Introduction to Simplicial Complexes

Basic idea of a simplicial complex: Triangle Mesh / Triangulation

0-simplex = point
1-simplex = line segment between two 0-simplexes
2-simplex = filled triangle

with boundary three 1-simplexes

3-simplex = tetrahedron with boundary four 2-simplexes
etc.

Image credit: teapot: https://groups.csail.mit.edu/graphics/classes/6.837/F98/TALecture/wireframe.gif
duck: https://s-media-cache-ak0.pinimg.com/236x/02/67/5d/02675d2ca6f42bdedf1b492d3f52bc83.jpg
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Introduction to Simplicial Complexes

Geometric Simplexes

For n + 1 points V = {v0, . . . , vn} in general position in a vector space

the n-simplex σV = [v0, . . . , vn] spanned by V is the convex hull of V .

Barycentric coordinates

x = t0v0 + t1v1 + · · ·+ tnvn 0 ≤ ti ≤ 1,
∑

ti = 1

Standard n-simplex: Use e0,e1, . . . ,en in Rn+1
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Introduction to Simplicial Complexes

Geometric Simplicial Complex

A geometric simplicial complex in RN is a subspace formed by
simplexes that intersect properly

, i.e., σA ∩ σB = σA∩B.
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Introduction to Simplicial Complexes

Abstract Simplicial Complex

A geometric simplicial complex (X ,V ) is completely determined by the
vertex set V and the set of simplexes σAα in X .

An abstract simplicial complex consists of
A set V called the vertexes
A set S of non-empty finite subsets of V

such that if A ∈ S then every non-empty subset of A is in S.

A geometric simplicial complex then determines an abstract simplicial
complex with the same vertex set. The set S is constructed inductively.

A map of simplicial complexes (V ,S)→ (V ′,S′) is a function
f : V → V ′ such that when A ∈ S, f (A) ∈ S′.
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Introduction to Simplicial Complexes

Geometric Realization

For a set V , let R〈V 〉 be the vector space with basis V .

If V is infinite, topologize R〈V 〉 with the union topology for the finite
subsets of V .

Definition
Let K = (V ,S) be an abstract simplicial complex. The geometric
realization |K | is the union of the simplexes in R〈V 〉 spanned by the
elements of S.

If f : V → RN is an injection onto a discrete subspace
such that for each A ∈ S, f (A) is in general position, and
for each A,B ∈ S, σf (A) ∩ σf (B) = σf (A∩B), taking X =

⋃
A∈S

σf (A),

then (X , f (V )) is a geometric simplicial complex whose abstract
simplicial complex is isomorphic to K via f .

Moreover, the unique linear extension f̃ : R〈V 〉 → RN induces a
homeomorphism |K | → X .
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Introduction to Simplicial Complexes

Subdivision
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Introduction to Simplicial Complexes

The Simplicial Approximation Theorem

Theorem
Let K and L be simplicial complexes and f : |K | → |L| a continuous
map. There exists a subdivision K ′ of K and a simplicial map
g : K ′ → L with |g| homotopic to f

Also a relative version for when f is already the geometric realization of
a simplicial map on a subcomplex of K .
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Introduction to Simplicial Complexes

Approximation by Simplicial Complexes

Spaces that are homeomorphic to simplicial complexes (examples)
Smooth manifolds
Semi-algebraic sets

Spaces that are homotopy equivalent to simplicial complexes
Euclidean neighborhood retracts
Absolute neighborhood retracts (in separable metric spaces)

Spaces that are weakly equivalent to simplicial complexes
All spaces
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Introduction to Homology

Invariants of Simplical Complexes

Counting simplexes

Alternating sum of number of simplexes

#S0 −#S1 +#S2 − · · ·

Euler characteristic

Powerful enough to classify compact surfaces, almost
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Introduction to Homology

The Linear Algebra of Faces

Let K be a simplicial complex.

(Choose an order on its vertex set)

Let Cn be the free abelian group generated by the n-simplices.

Let dn : Cn → Cn−1 be the homomorphism that takes an n-simplex
[v0, . . . , vn] to

d [v0, . . . , vn] = [v1, . . . , vn]− [v0, v2, . . . , vn] + · · ·
+ (−1)i [v0, . . . , v̂i , . . . , vn] + · · ·+ (−1)n[v0, . . . , vn−1]

Let Zn = Ker(dn) ⊂ Cn
Let Bn = Im(dn+1) ⊂ Cn

Turns out Bn ⊂ Zn (or equivalently dn ◦ dn+1 = 0)

An algebraic object like this is called a chain complex
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Introduction to Homology

Chain Complexes and Homology

Definition
A chain complex is a sequence of abelian groups (or vector spaces)
C0, C1, . . . , and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . . ,
such that dn ◦ dn+1 = 0.

An elt. of the subgroup Zn = Ker(dn) ⊂ Cn is called an n-cycle
An elt. of the subgroup Bn = Im(dn+1) ⊂ Zn is called an n-boundary.

Definition
Hn = Zn/Bn is called the n-th homology group.
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Examples
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Introduction to Homology

Homomorphisms and Chain Homotopies

A homomorphism of chain complexes f∗ : C∗ → C′∗ consists of
homomorphisms fn : Cn → C′n such that d ′n+1 ◦ fn+1 = fn ◦ dn+1

Cn+1
dn+1 ��

fn+1
// C′n+1

d ′
n+1��

Cn fn
// C′n

A homomorphism of chain complexes induces a homomorphism on
homology

Given homomorphisms f∗ and g∗, a chain homotopy from f∗ to g∗
consists of homomorphisms sn : Cn → C′n+1 such that

dn+1 ◦ sn = gn − fn + (−1)nsn ◦ dn

Chain homotopic maps induce the same map on homology
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Subdivision
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Introduction to Homology

The Invariance Theorem

Let K and L be simplicial complexes and let f ,g : K → L be maps of
simplicial complexes. If |f | and |g| are homotopic, then f and g are
chain homotopic and induce the same homomorphism on homology.

Consequences
A map |K | → |L| induces a well-defined homomorphism of
homology
Homology groups are a topological invariant,
even a homotopy equivalence invaraint
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Introduction to Homology

Homology of Compact Surfaces

H0
∼= Z

H1
∼= Z⊕ Z

H2
∼= Z

H0
∼= Z

H1
∼= Z⊕ Z/2

H2
∼= 0

Image credit
torus: Oleg Alexandrov / Wikipedia
Klein bottle: https://commons.wikimedia.org/wiki/File:Surface_of_Klein_bottle_with_traced_line.svg
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Introduction to Homology

Lots More to Say

1 Simplicial Complexes

Star neighborhoods
Simplicial approximations
Contiguity

2 Homology

Pairs, long exact sequences
Mayer-Vietoris
Handle attachment
Intersections / Poincaré duality / cohomology

3 Intermediate topics
Homotopy theory: homotopy groups, fibrations, cofibrations
Spectral sequences
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Questions and Answers
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